Handbook of Ecomaterials pp 3107-3123 | Cite as
An Overview of Advancement in the Application of Heat-Resistant Alloys
Reference work entry
First Online:
Abstract
This chapter presents the advancement in industrial applications of heat-resistant alloys. The types and properties of various heat-resistant alloys and their common areas of applications are highlighted.
Keywords
Refractory Alloy Creep rate Directionally solidified Nitrogen MicrostructureReferences
- 1.Garofalo F (1968) Zakony polzuchesti i dliteVnoi prochnosti metallov i splavov. Moscow (Translated from English). https://encyclopedia2.thefreedictionary.com/Heatresistant+Alloys
- 2.Kurdiumov GV (1960) Priroda uprochnennogo sostoianiia metallov. Metallov’edenie i termicheskaia obrabotka metallov, 10Google Scholar
- 3.Rozenberg VM. Polzuchest’ metallov. Moscow, 1967. Khimushin FF. Zharoprochnye stall i splavy, 2nd edn. Moscow, 1969. https://encyclopedia2.thefreedictionary.com/Heatresistant+Alloys
- 4.Jie QI et al (2016) Viscous properties of new mould flux based on aluminate system with CeO2 for continuous casting of RE alloyed heat resistant steel. J Rare Earths 34(3):328–335Google Scholar
- 5.Lei C et al (2016) Effect of rare earth alloying on creep rupture of economical 21Cr-11Ni-N heat resistant austenitic steel at 60 °C. J Rare Earths 34(4):447–452Google Scholar
- 6.Huang Z et al (2015) Microstructures and mechanical properties of Mg-Al-Sm series heat-resistant magnesium alloys. Trans Nonferrous Metals Soc China 25:22–29Google Scholar
- 7.Lobanov LM et al (2016) Investigation of residual stresses in welded joints of heat–resistant magnesium alloy ML10 after electrodynamic treatment. J Magnes Alloys 4:77–82Google Scholar
- 8.Attarian M et al (2016) Microstructural and failure analysis of welded primary reformer furnace tube made of HP-Nb micro alloyed heat resistant steel. Eng Fail Anal 68:32–51Google Scholar
- 9.Sourmail T, Bhadeshia HKDH, MacKay CDJ (2002) Neural network model of creep strength of austenitic stainless steels. Mater Sci Technol 18:665Google Scholar
- 10.Viswanathan R, Bakker W (2001) Materials for ultra supercritical coal power plants-boiler materials: Part 1. J Mater Eng Perform 10(1):81–95Google Scholar
- 11.Igarashi M (2004) In: Yagi K et al (eds) Group VIII: advanced materials and technologies. Springer, BerlinGoogle Scholar
- 12.Park I, Masuyama F, Endo T (2000) Key Eng Mater 171–174:445–452Google Scholar
- 13.Swindeman RW, Maziasz PJ (1991) pp Medium: X; Size: Pages: (59 p)Google Scholar
- 14.Wang J-Z, Liu Z-D, Bao H-S, Cheng S-C (2013) J Iron Steel Res Int 20:113–121Google Scholar
- 15.Iseda A, Okada H, Semba H, Igarashi M (2007) Energy Mater 2:199–206Google Scholar
- 16.Hack H, Stanko G (2005) In: Proceedings of the 22nd annual international Pittsburgh coal conference, PittsburghGoogle Scholar
- 17.Natesan K, Park JH (2007) Int J Hydrog Energy 32:3689–3697Google Scholar
- 18.Viswanathan R, Sarver J, Tanzosh JM (2006) J Mater Eng Perform 15:255–274Google Scholar
- 19.Abe F, Araki H, Noda T (1991) Metall Mater Trans A 22:2225–2235Google Scholar
- 20.Asakura K, Yamashita Y, Yamada T, Shibata K (1990) J Iron Steel Inst 30:937–946Google Scholar
- 21.Dimmler G, Weinert P, Kozeschnik E, Cerjak H (2003) Mater Charact 51:341–352Google Scholar
- 22.Patriarca P, Jarkness SD, Duke JM, Cooper LR (1976) Nucl Technol 28:516–536Google Scholar
- 23.Chen L, Ma XC, Wang LM, Ye XN (2011) Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel. Mater Des 32:2206–2212Google Scholar
- 24.Lo KH, Shek CH, Lai JKL (2009) Recent developments in stainless steels. Mater Sci Eng R 65:39–104Google Scholar
- 25.Mathew MD, Laha K, Ganesan V (2012) Improving creep strength of 316L stainless steel by alloying with nitrogen. Mater Sci Eng A 535:76–83Google Scholar
- 26.Lala K, Kyono J, Shinya N (2007) An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steel. Scr Mater 56:915–918Google Scholar
- 27.Masuyama F (2007) Creep rupture life and design factors for high-strength ferritic steels. Int J Press Vessel Pip 84:53–61Google Scholar
- 28.Fukuda M, Saito E, Semba H, Iwasaki J, Izumi S, Takano S, Takahashi T, Sumiyoshi Y (2013) Advanced USC technology development in Japan. In: Gandy D, Shingledecker J (eds) Advances in materials technology for fossil power plants-proceedings from the seventh international conference. ASM International, Materials Park, pp 24–40Google Scholar
- 29.Masuyama F (2001) History of power plants and progress in heat resistant steels. Iron Steel Inst Jpn Int 41:612–625Google Scholar
- 30.Gianfrancesco AD, Tizzanini A, Jedamzik M (2013) ENCIO project: an European approach to 700 °C power plant. In: Gandy D, Shingledecker J (eds) Advances in materials technology for fossil power plants-proceedings from the seventh international conference. ASM International, Materials Park, pp 9–23Google Scholar
- 31.Mathur A, Butani OP, Jayakumar T, Dubey DK, Chetal SC (2013) India’s national A-USC mission-plan and progress. In: Gandy D, Shingledecker J (eds) Advances in materials technology for fossil power plants-proceedings from the seventh international conference. ASM International, Materials Park, pp 53–59Google Scholar
- 32.Shingledecker J, Purgert R, Rawls P (2013) Current status of the U.S DOE/OCDO A-USC materials technology research and development program. In: Gandy D, Shingledecker J (eds) Advances in materials technology for fossil power plants-proceedings from the seventh international conference. ASM International, Materials Park, pp 41–52Google Scholar
- 33.Nakashima H, Yamazaki S, Mitsuhara M (2015) Development of high nitrogen ferritic heat-resistant steel for boiler material in next generation power plant, CAMP-ISIJ meeting, vol 28, p 867Google Scholar
- 34.Nunes FC, Dille J, Delplancke JL, de Almmeida LH (2006) Scr Mater 54:1553–1556Google Scholar
- 35.Roy M, Pauschitz A, Wernisch J, Franek F (2004) Mater Corros 55:259–273Google Scholar
- 36.Wilson JD, Carney TJ, Kelly JC (2005) Micro-alloying improves resistance to high temperature environments. In: George R (ed) Corrosion 2005. NACE International, Houston, pp 422–432Google Scholar
- 37.Chen L, Zhang Y, Li F, Liu X, Guo B, Jin M (2016) Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation. Mater Sci Eng A 663:141–150Google Scholar
- 38.Lin YC, Chen XM (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32(4):1733–1759Google Scholar
- 39.Marandi A, Zarei-Hanzaki A, Haghdadi N, Eskandari M (2012) Mater Sci Eng A 554:72–78Google Scholar
- 40.McQueen HJ, Yue S, Ryan ND, Fry E (1995) J Mater Process Technol 53:293–310Google Scholar
- 41.Herda W, Rickard AJ (1979) A comprehensive collection of outstanding articles from the periodical and reference literature. In: Bradley EF (ed) Source book on materials for elevated-temperature applications. ASM, Materials Park, pp 55–63Google Scholar
- 42.Zhu SJ, Wang Y, Wang FG (1990a) J Mater Sci Lett 9:520–521Google Scholar
- 43.Andrade AR, Bolfarini C, Ferreira LAM, Vilar AAA, Souza Filho CD, Bonazzi LHC (2015) Mater Sci Eng A 628:176–180Google Scholar
- 44.Zhu SJ, Zhao J, Wang FG (1990b) Metall. Trans 21A:2237–2241Google Scholar
- 45.Wang F, Northwood DO (1993) Mater Charact 31:3–10Google Scholar
- 46.Kondo Y, Inazumi T, Takeyama M, Matsuo T, Tanaka R (1990) Tetsu to Hagane 76(2):246–253Google Scholar
- 47.Matsuo T, Nakajima K, Terada Y, Kikuchi M (1991) Mater Sci Eng A 146:261–272Google Scholar
- 48.ASM Specialty Handbook (1997) In: Davis JR (ed) Heat resistant, materials. ASM International, Materials Park, pp 207–210Google Scholar
- 49.Cox GJ (1980) In: Proceedings of the 47th international foundry congress, Jerusalem, Oct 1980, paper no. 12, pp 349–404Google Scholar
- 50.Kikuchi M, Sakakibara M, Otoguro Y, Mimura H, Araki S, Fujita T (1987) In: Marriott JB et al (eds) High temperature alloys their exploitable. Elsevier, London/New York, pp 267–276Google Scholar
- 51.Shingledecker JP, Maziasz PJ, Evans ND, Pollard MJ (2007) Int J Press Vessel Pip 84:21–28Google Scholar
- 52.Attarian M, Taheri AK (2016) Microstructural evolution in creep aged of directionally solidified heat resistant HP-Nb steel alloyed with tungsten and nitrogen. Mater Sci Eng A 659:104–118Google Scholar
- 53.Kenik EA, Maziasz PJ, Swindeman RW, Cervenka J, May D (2003) Structure and phase stability in a cast modified-HP austenite after long-term ageing. Scr Mater 49:117–122Google Scholar
- 54.Huber J, Jakobi D (2010) Centricast materials for high temperature service. Nitrogen + Syngas 307:36–39Google Scholar
- 55.Schillmoller CM (2000) HP-modified furnace tubes for steam reformers and steam crackers. NiDi technical series no 10 058(Canada), Nickel Institute CanadaGoogle Scholar
- 56.Gong JM, Tu ST, Yoon KB (1999) Damage assessment and maintenance strategy of hydrogen reformer furnace tubes. Eng Fail Anal 6:143–153Google Scholar
- 57.Alvino A, Lega D, Giacobbe F, Mazzocchi V, Rinaldi A (2010) Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions. Eng Fail Anal 17:1526–1541Google Scholar
- 58.Brear JM, Church JM, Humphrey DR, Zanjani MS (2001) Life assessment of steam reformer radiant catalyst tubes – the use of damage front propagation methods. Int J Press Vessel Pip 78:985–994Google Scholar
- 59.Jakobi D, Gommans R (2003) Typical failures in pyrolysis coils for ethylene cracking. Mater Corros 54:881–886Google Scholar
- 60.Konoki K, Shinohara T, Shibata K (1982) Creep rupture of steam reforming tube due to thermal stress. Plant/Oper Prog 1:122–127Google Scholar
- 61.Ray AK, Sinha SK, Tiwari YN, Swaminathan J, Das G, Chaudhuri S, Singh R (2003) Analysis of failed reformer tubes. Eng Fail Anal 10:351–362Google Scholar
- 62.Shariat MH, Faraji AH, Ashraf-Riahy A, Alipour MM (2003) In advanced creep failure of HP modified reformer tubes in an ammonia plant. J Corros Sci Eng 6 (Paper H012 preprint 69)Google Scholar
- 63.Hu BW (2006) The design idea of refractory steel. Equip Manuf Technol 4(4):50Google Scholar
- 64.Lin FS, Wang ZZ, Wang BZ, Cheng SC, Xie XS (2010) Research, application and development of domestic heat resistant steels and alloys for power plants. J Chin Soc Power Eng 30(4):235Google Scholar
- 65.Chen L, Ma XC, Wang MJ, Xue HY (2015) Effect of RE on molybdenum partitioning and resultant mechanical and microstructural behavior of a duplex stainless steel during hot working condition. J Rare Earths 33(1):107Google Scholar
- 66.Xing XG, Han ZJ, Wang HF, Lu PN (2015) Electrochemical corrosion resistance of CeO2-Cr/Ti coatings on 304 stainless steel via pack cementation. J Rare Earths 33(10):1122Google Scholar
- 67.Zhu ZP (2008) Handbook for designation of stainless and heat resisting steel. Chemistry Industry Press, BeijingGoogle Scholar
- 68.Li XH, Li CL, Wang YS (2003) Influence of rare earth on the mould flux properties. Chin Rare Earths 24(5):18Google Scholar
- 69.Wang DY, Jiang MF, Liu CJ, Shi PY, Yao YK, Wang HH (2005) Effects of rare earth oxide on viscosity of mold fluxes for continuous casting. J Chin Soc Rare Earths 23(1):100Google Scholar
- 70.Polmear IJ (1994) Magnesium alloys and applications. Mater Sci Technol 10(1):1–16Google Scholar
- 71.Lou Y, Bai X, Li L-X (2011) Effect of Sr addition on microstructure of as-cast Mg–Al–Ca alloy. Trans Nonferrous Metals Soc China 21(6):1247–1252Google Scholar
- 72.Wang QD, Chen WZ, Zeng XQ, Lu YZ, Ding WJ, Zhu YP, Xu XP (2001) Effects of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. J Mater Sci 36(12):3035–3040Google Scholar
- 73.Xu CX, Ju H, Zhou Y (2011) Effect of Ca on microstructure and properties of Mg–Al–Si alloys. Adv Mater Res 194–196:1369–1373Google Scholar
- 74.Lu YZ, Wang QD, Zeng XQ, Zhu YP, Ding WJ (2001) Behavior of Mg–6Al–xSi alloys during solution heat treatment at 420 °C. Mater Sci Eng A 301:255–258Google Scholar
- 75.Yuan GY, Liu ZL, Wang QD, Ding WJ (2002) Microstructure refinement of Mg–Al–Zn–Si alloys. Mater Lett 56:53–58Google Scholar
- 76.Asl KM, Tari A, Khomamizadeh F (2009) The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg–Al alloys. Mater Sci Eng A 523(1–2):1–6Google Scholar
- 77.Son HT, Lee JS, Kim DG, Yoshimi K, Maruyama K (2009) Effects of samarium (Sm) additions on the microstructure and mechanical properties of as-cast and hot-extruded Mg–5wt%Al– 3wt%Ca-based alloys. J Alloys Compd 473(1–2):446–452Google Scholar
- 78.Yokobayashi H, Kishida K, Inui H, Yamasaki M, Kawamura Y (2011) Enrichment of Gd and Al atoms in the quadruple close packed planes and their in-plane long-range ordering in the long period stacking-ordered phase in the Mg–Al–Gd system. Acta Mater 59(19):7287–7299Google Scholar
- 79.Zhang JH, Yu P, Liu K, Fang DQ, Tang DX, Meng J (2009) Effect of substituting cerium-rich mischmetal with lanthanum on microstructure and mechanical properties of die-cast Mg–Al–RE alloys. Mater Des 30(7):2372–2378Google Scholar
- 80.Zhang S-C, Wei B-K, Cai Q-Z, Wang L-s (2003) Effect of mischmetal and yttrium on microstructures and mechanical properties of Mg–Al alloy. Trans Nonferrous Metals Soc China 13(1):83–87Google Scholar
- 81.Kim SI, Lee Y, Byon SM (2003) Study on constitutive relation of AISI 4140 steel subject to large strain at elevated temperatures. J Mater Process Technol 140(1–3):84–89Google Scholar
- 82.Quan GZ, Tong Y, Zhou J (2010) Dynamic softening behaviour of AZ80 magnesium alloy during upsetting at different temperatures and strain rates. Proc Inst Mech Eng B J Eng Manuf 224(11):1707–1716Google Scholar
- 83.Momeni A, Dehghani K, Keshmiri H, Ebrahimi GR (2010) Hot deformation behaviour and microstructural evolution of a superaustenitic stainless steel. Mater Sci Eng A 527(6):1605–1611Google Scholar
- 84.Quan GZ, Li GS, Chen T, Wang YX, Zhang YW, Zhou J (2011) Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates. Mater Sci Eng A 528(13–14):4643–4651Google Scholar
- 85.Quan G-Z, Mao A, Luo G-C, Liang J-T, Wu D-S, Zhou J (2013) Constitutive modeling for the dynamic recrystallization kinetics of as-extruded 3Cr20Ni10W2 heat-resistant alloy based on stress–strain data. Mater Des 52:98–107Google Scholar
- 86.Li Q, Wu A, Li Y, Wang G, Yan D, Liu J (2015) Mater Sci Eng A 623:38–48Google Scholar
- 87.Nový F, Janeček M, Král R (2009) J Alloys Compd 487:146–151Google Scholar
- 88.Wang J, Yi D, Su X, Yin F (2008) Mater Charact 59:965–968Google Scholar
- 89.Bai S, Liu Z, Li Y, Hou Y, Chen X (2010) Mater Sci Eng A 527:1806–1814Google Scholar
- 90.Zhang JB, Zhang YA, Zhu BH, Liu RQ, Wang F, Liang QM (2013) Mater Des 49:311–317Google Scholar
- 91.Vietz JT, Polmear IJ (1966) J Inst Met 94:410–419Google Scholar
- 92.Bai S, Zhou X, Liu Z, Xia P, Liu M, Zeng S (2014) Mater Sci Eng A 611:69–76Google Scholar
- 93.Liu XY, Pan QL, Zheng LY, Fu QR, Gao F, Li MX, Bai YM (2013) Mater Des 46:360–365Google Scholar
- 94.Xia QK, Liu ZY, Li YT (2008) Trans Nonferrous Metals Soc China 18:789–794Google Scholar
- 95.Hutchinson CR, Fan X, Pennycook SJ, Shiflet GJ (2001) Acta Mater 49:2827–2841Google Scholar
- 96.Reich L, Murayama M, Hono K (1998) Acta Mater 46:6053–6062Google Scholar
- 97.Ringer SP, Yeung W, Muddle BC, Polmear IJ (1994) Acta Metall 42:1715–1725Google Scholar
- 98.Gable BM, Zhu AW, Shiflet GJ, Starke EA Jr (2008) Comput Coupling Phase Diagrams Thermochem 32:256–267Google Scholar
- 99.Li K-J, Li Q-A, Jing X-T, Chen J, Zhang X-Y (2009a) Effects of Sb, Sm and Sn additions on the microstructure and mechanical properties of Mg–6Al–1.2Y–0.9Nd alloy. Rare Metals 28(5):516–522Google Scholar
- 100.Li WY, Yu M, Li JL, Zhang GF, Wang SY (2009b) Characterizations of 21-4N to 4Cr9Si2 stainless steel dissimilar joint bonded by electric-resistance-heat-aided friction welding. Mater Des 30:4230–4235Google Scholar
- 101.Lin YC, Chen MS, Zhong J (2008a) Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput Mater Sci 42(3):470–477Google Scholar
- 102.Lin YC, Chen MS, Zhong J (2008b) Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process. Comput Mater Sci 43(4):1117–1122Google Scholar
- 103.Liu WB, Zhang C, Xia ZX, Yang ZG (2014a) Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment. J Nucl Mater 455:402Google Scholar
- 104.Liu YQ, Wang LJ, Chou K (2014b) Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway. J Rare Earths 32(8):759Google Scholar
- 105.Liu XY, Pan QL, Zhang XL, Liang SX, Gao F, Zheng LY, Li MX (2014c) Mater Sci Eng A 599:160–165Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019