Advertisement

An Overview of Advancement in the Application of Heat-Resistant Alloys

  • Sunday Albert LawalEmail author
  • Oyewole Adedipe
Reference work entry

Abstract

This chapter presents the advancement in industrial applications of heat-resistant alloys. The types and properties of various heat-resistant alloys and their common areas of applications are highlighted.

Keywords

Refractory Alloy Creep rate Directionally solidified Nitrogen Microstructure 

References

  1. 1.
    Garofalo F (1968) Zakony polzuchesti i dliteVnoi prochnosti metallov i splavov. Moscow (Translated from English). https://encyclopedia2.thefreedictionary.com/Heatresistant+Alloys
  2. 2.
    Kurdiumov GV (1960) Priroda uprochnennogo sostoianiia metallov. Metallov’edenie i termicheskaia obrabotka metallov, 10Google Scholar
  3. 3.
    Rozenberg VM. Polzuchest’ metallov. Moscow, 1967. Khimushin FF. Zharoprochnye stall i splavy, 2nd edn. Moscow, 1969. https://encyclopedia2.thefreedictionary.com/Heatresistant+Alloys
  4. 4.
    Jie QI et al (2016) Viscous properties of new mould flux based on aluminate system with CeO2 for continuous casting of RE alloyed heat resistant steel. J Rare Earths 34(3):328–335Google Scholar
  5. 5.
    Lei C et al (2016) Effect of rare earth alloying on creep rupture of economical 21Cr-11Ni-N heat resistant austenitic steel at 60 °C. J Rare Earths 34(4):447–452Google Scholar
  6. 6.
    Huang Z et al (2015) Microstructures and mechanical properties of Mg-Al-Sm series heat-resistant magnesium alloys. Trans Nonferrous Metals Soc China 25:22–29Google Scholar
  7. 7.
    Lobanov LM et al (2016) Investigation of residual stresses in welded joints of heat–resistant magnesium alloy ML10 after electrodynamic treatment. J Magnes Alloys 4:77–82Google Scholar
  8. 8.
    Attarian M et al (2016) Microstructural and failure analysis of welded primary reformer furnace tube made of HP-Nb micro alloyed heat resistant steel. Eng Fail Anal 68:32–51Google Scholar
  9. 9.
    Sourmail T, Bhadeshia HKDH, MacKay CDJ (2002) Neural network model of creep strength of austenitic stainless steels. Mater Sci Technol 18:665Google Scholar
  10. 10.
    Viswanathan R, Bakker W (2001) Materials for ultra supercritical coal power plants-boiler materials: Part 1. J Mater Eng Perform 10(1):81–95Google Scholar
  11. 11.
    Igarashi M (2004) In: Yagi K et al (eds) Group VIII: advanced materials and technologies. Springer, BerlinGoogle Scholar
  12. 12.
    Park I, Masuyama F, Endo T (2000) Key Eng Mater 171–174:445–452Google Scholar
  13. 13.
    Swindeman RW, Maziasz PJ (1991) pp Medium: X; Size: Pages: (59 p)Google Scholar
  14. 14.
    Wang J-Z, Liu Z-D, Bao H-S, Cheng S-C (2013) J Iron Steel Res Int 20:113–121Google Scholar
  15. 15.
    Iseda A, Okada H, Semba H, Igarashi M (2007) Energy Mater 2:199–206Google Scholar
  16. 16.
    Hack H, Stanko G (2005) In: Proceedings of the 22nd annual international Pittsburgh coal conference, PittsburghGoogle Scholar
  17. 17.
    Natesan K, Park JH (2007) Int J Hydrog Energy 32:3689–3697Google Scholar
  18. 18.
    Viswanathan R, Sarver J, Tanzosh JM (2006) J Mater Eng Perform 15:255–274Google Scholar
  19. 19.
    Abe F, Araki H, Noda T (1991) Metall Mater Trans A 22:2225–2235Google Scholar
  20. 20.
    Asakura K, Yamashita Y, Yamada T, Shibata K (1990) J Iron Steel Inst 30:937–946Google Scholar
  21. 21.
    Dimmler G, Weinert P, Kozeschnik E, Cerjak H (2003) Mater Charact 51:341–352Google Scholar
  22. 22.
    Patriarca P, Jarkness SD, Duke JM, Cooper LR (1976) Nucl Technol 28:516–536Google Scholar
  23. 23.
    Chen L, Ma XC, Wang LM, Ye XN (2011) Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel. Mater Des 32:2206–2212Google Scholar
  24. 24.
    Lo KH, Shek CH, Lai JKL (2009) Recent developments in stainless steels. Mater Sci Eng R 65:39–104Google Scholar
  25. 25.
    Mathew MD, Laha K, Ganesan V (2012) Improving creep strength of 316L stainless steel by alloying with nitrogen. Mater Sci Eng A 535:76–83Google Scholar
  26. 26.
    Lala K, Kyono J, Shinya N (2007) An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steel. Scr Mater 56:915–918Google Scholar
  27. 27.
    Masuyama F (2007) Creep rupture life and design factors for high-strength ferritic steels. Int J Press Vessel Pip 84:53–61Google Scholar
  28. 28.
    Fukuda M, Saito E, Semba H, Iwasaki J, Izumi S, Takano S, Takahashi T, Sumiyoshi Y (2013) Advanced USC technology development in Japan. In: Gandy D, Shingledecker J (eds) Advances in materials technology for fossil power plants-proceedings from the seventh international conference. ASM International, Materials Park, pp 24–40Google Scholar
  29. 29.
    Masuyama F (2001) History of power plants and progress in heat resistant steels. Iron Steel Inst Jpn Int 41:612–625Google Scholar
  30. 30.
    Gianfrancesco AD, Tizzanini A, Jedamzik M (2013) ENCIO project: an European approach to 700 °C power plant. In: Gandy D, Shingledecker J (eds) Advances in materials technology for fossil power plants-proceedings from the seventh international conference. ASM International, Materials Park, pp 9–23Google Scholar
  31. 31.
    Mathur A, Butani OP, Jayakumar T, Dubey DK, Chetal SC (2013) India’s national A-USC mission-plan and progress. In: Gandy D, Shingledecker J (eds) Advances in materials technology for fossil power plants-proceedings from the seventh international conference. ASM International, Materials Park, pp 53–59Google Scholar
  32. 32.
    Shingledecker J, Purgert R, Rawls P (2013) Current status of the U.S DOE/OCDO A-USC materials technology research and development program. In: Gandy D, Shingledecker J (eds) Advances in materials technology for fossil power plants-proceedings from the seventh international conference. ASM International, Materials Park, pp 41–52Google Scholar
  33. 33.
    Nakashima H, Yamazaki S, Mitsuhara M (2015) Development of high nitrogen ferritic heat-resistant steel for boiler material in next generation power plant, CAMP-ISIJ meeting, vol 28, p 867Google Scholar
  34. 34.
    Nunes FC, Dille J, Delplancke JL, de Almmeida LH (2006) Scr Mater 54:1553–1556Google Scholar
  35. 35.
    Roy M, Pauschitz A, Wernisch J, Franek F (2004) Mater Corros 55:259–273Google Scholar
  36. 36.
    Wilson JD, Carney TJ, Kelly JC (2005) Micro-alloying improves resistance to high temperature environments. In: George R (ed) Corrosion 2005. NACE International, Houston, pp 422–432Google Scholar
  37. 37.
    Chen L, Zhang Y, Li F, Liu X, Guo B, Jin M (2016) Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation. Mater Sci Eng A 663:141–150Google Scholar
  38. 38.
    Lin YC, Chen XM (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32(4):1733–1759Google Scholar
  39. 39.
    Marandi A, Zarei-Hanzaki A, Haghdadi N, Eskandari M (2012) Mater Sci Eng A 554:72–78Google Scholar
  40. 40.
    McQueen HJ, Yue S, Ryan ND, Fry E (1995) J Mater Process Technol 53:293–310Google Scholar
  41. 41.
    Herda W, Rickard AJ (1979) A comprehensive collection of outstanding articles from the periodical and reference literature. In: Bradley EF (ed) Source book on materials for elevated-temperature applications. ASM, Materials Park, pp 55–63Google Scholar
  42. 42.
    Zhu SJ, Wang Y, Wang FG (1990a) J Mater Sci Lett 9:520–521Google Scholar
  43. 43.
    Andrade AR, Bolfarini C, Ferreira LAM, Vilar AAA, Souza Filho CD, Bonazzi LHC (2015) Mater Sci Eng A 628:176–180Google Scholar
  44. 44.
    Zhu SJ, Zhao J, Wang FG (1990b) Metall. Trans 21A:2237–2241Google Scholar
  45. 45.
    Wang F, Northwood DO (1993) Mater Charact 31:3–10Google Scholar
  46. 46.
    Kondo Y, Inazumi T, Takeyama M, Matsuo T, Tanaka R (1990) Tetsu to Hagane 76(2):246–253Google Scholar
  47. 47.
    Matsuo T, Nakajima K, Terada Y, Kikuchi M (1991) Mater Sci Eng A 146:261–272Google Scholar
  48. 48.
    ASM Specialty Handbook (1997) In: Davis JR (ed) Heat resistant, materials. ASM International, Materials Park, pp 207–210Google Scholar
  49. 49.
    Cox GJ (1980) In: Proceedings of the 47th international foundry congress, Jerusalem, Oct 1980, paper no. 12, pp 349–404Google Scholar
  50. 50.
    Kikuchi M, Sakakibara M, Otoguro Y, Mimura H, Araki S, Fujita T (1987) In: Marriott JB et al (eds) High temperature alloys their exploitable. Elsevier, London/New York, pp 267–276Google Scholar
  51. 51.
    Shingledecker JP, Maziasz PJ, Evans ND, Pollard MJ (2007) Int J Press Vessel Pip 84:21–28Google Scholar
  52. 52.
    Attarian M, Taheri AK (2016) Microstructural evolution in creep aged of directionally solidified heat resistant HP-Nb steel alloyed with tungsten and nitrogen. Mater Sci Eng A 659:104–118Google Scholar
  53. 53.
    Kenik EA, Maziasz PJ, Swindeman RW, Cervenka J, May D (2003) Structure and phase stability in a cast modified-HP austenite after long-term ageing. Scr Mater 49:117–122Google Scholar
  54. 54.
    Huber J, Jakobi D (2010) Centricast materials for high temperature service. Nitrogen + Syngas 307:36–39Google Scholar
  55. 55.
    Schillmoller CM (2000) HP-modified furnace tubes for steam reformers and steam crackers. NiDi technical series no 10 058(Canada), Nickel Institute CanadaGoogle Scholar
  56. 56.
    Gong JM, Tu ST, Yoon KB (1999) Damage assessment and maintenance strategy of hydrogen reformer furnace tubes. Eng Fail Anal 6:143–153Google Scholar
  57. 57.
    Alvino A, Lega D, Giacobbe F, Mazzocchi V, Rinaldi A (2010) Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions. Eng Fail Anal 17:1526–1541Google Scholar
  58. 58.
    Brear JM, Church JM, Humphrey DR, Zanjani MS (2001) Life assessment of steam reformer radiant catalyst tubes – the use of damage front propagation methods. Int J Press Vessel Pip 78:985–994Google Scholar
  59. 59.
    Jakobi D, Gommans R (2003) Typical failures in pyrolysis coils for ethylene cracking. Mater Corros 54:881–886Google Scholar
  60. 60.
    Konoki K, Shinohara T, Shibata K (1982) Creep rupture of steam reforming tube due to thermal stress. Plant/Oper Prog 1:122–127Google Scholar
  61. 61.
    Ray AK, Sinha SK, Tiwari YN, Swaminathan J, Das G, Chaudhuri S, Singh R (2003) Analysis of failed reformer tubes. Eng Fail Anal 10:351–362Google Scholar
  62. 62.
    Shariat MH, Faraji AH, Ashraf-Riahy A, Alipour MM (2003) In advanced creep failure of HP modified reformer tubes in an ammonia plant. J Corros Sci Eng 6 (Paper H012 preprint 69)Google Scholar
  63. 63.
    Hu BW (2006) The design idea of refractory steel. Equip Manuf Technol 4(4):50Google Scholar
  64. 64.
    Lin FS, Wang ZZ, Wang BZ, Cheng SC, Xie XS (2010) Research, application and development of domestic heat resistant steels and alloys for power plants. J Chin Soc Power Eng 30(4):235Google Scholar
  65. 65.
    Chen L, Ma XC, Wang MJ, Xue HY (2015) Effect of RE on molybdenum partitioning and resultant mechanical and microstructural behavior of a duplex stainless steel during hot working condition. J Rare Earths 33(1):107Google Scholar
  66. 66.
    Xing XG, Han ZJ, Wang HF, Lu PN (2015) Electrochemical corrosion resistance of CeO2-Cr/Ti coatings on 304 stainless steel via pack cementation. J Rare Earths 33(10):1122Google Scholar
  67. 67.
    Zhu ZP (2008) Handbook for designation of stainless and heat resisting steel. Chemistry Industry Press, BeijingGoogle Scholar
  68. 68.
    Li XH, Li CL, Wang YS (2003) Influence of rare earth on the mould flux properties. Chin Rare Earths 24(5):18Google Scholar
  69. 69.
    Wang DY, Jiang MF, Liu CJ, Shi PY, Yao YK, Wang HH (2005) Effects of rare earth oxide on viscosity of mold fluxes for continuous casting. J Chin Soc Rare Earths 23(1):100Google Scholar
  70. 70.
    Polmear IJ (1994) Magnesium alloys and applications. Mater Sci Technol 10(1):1–16Google Scholar
  71. 71.
    Lou Y, Bai X, Li L-X (2011) Effect of Sr addition on microstructure of as-cast Mg–Al–Ca alloy. Trans Nonferrous Metals Soc China 21(6):1247–1252Google Scholar
  72. 72.
    Wang QD, Chen WZ, Zeng XQ, Lu YZ, Ding WJ, Zhu YP, Xu XP (2001) Effects of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. J Mater Sci 36(12):3035–3040Google Scholar
  73. 73.
    Xu CX, Ju H, Zhou Y (2011) Effect of Ca on microstructure and properties of Mg–Al–Si alloys. Adv Mater Res 194–196:1369–1373Google Scholar
  74. 74.
    Lu YZ, Wang QD, Zeng XQ, Zhu YP, Ding WJ (2001) Behavior of Mg–6Al–xSi alloys during solution heat treatment at 420 °C. Mater Sci Eng A 301:255–258Google Scholar
  75. 75.
    Yuan GY, Liu ZL, Wang QD, Ding WJ (2002) Microstructure refinement of Mg–Al–Zn–Si alloys. Mater Lett 56:53–58Google Scholar
  76. 76.
    Asl KM, Tari A, Khomamizadeh F (2009) The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg–Al alloys. Mater Sci Eng A 523(1–2):1–6Google Scholar
  77. 77.
    Son HT, Lee JS, Kim DG, Yoshimi K, Maruyama K (2009) Effects of samarium (Sm) additions on the microstructure and mechanical properties of as-cast and hot-extruded Mg–5wt%Al– 3wt%Ca-based alloys. J Alloys Compd 473(1–2):446–452Google Scholar
  78. 78.
    Yokobayashi H, Kishida K, Inui H, Yamasaki M, Kawamura Y (2011) Enrichment of Gd and Al atoms in the quadruple close packed planes and their in-plane long-range ordering in the long period stacking-ordered phase in the Mg–Al–Gd system. Acta Mater 59(19):7287–7299Google Scholar
  79. 79.
    Zhang JH, Yu P, Liu K, Fang DQ, Tang DX, Meng J (2009) Effect of substituting cerium-rich mischmetal with lanthanum on microstructure and mechanical properties of die-cast Mg–Al–RE alloys. Mater Des 30(7):2372–2378Google Scholar
  80. 80.
    Zhang S-C, Wei B-K, Cai Q-Z, Wang L-s (2003) Effect of mischmetal and yttrium on microstructures and mechanical properties of Mg–Al alloy. Trans Nonferrous Metals Soc China 13(1):83–87Google Scholar
  81. 81.
    Kim SI, Lee Y, Byon SM (2003) Study on constitutive relation of AISI 4140 steel subject to large strain at elevated temperatures. J Mater Process Technol 140(1–3):84–89Google Scholar
  82. 82.
    Quan GZ, Tong Y, Zhou J (2010) Dynamic softening behaviour of AZ80 magnesium alloy during upsetting at different temperatures and strain rates. Proc Inst Mech Eng B J Eng Manuf 224(11):1707–1716Google Scholar
  83. 83.
    Momeni A, Dehghani K, Keshmiri H, Ebrahimi GR (2010) Hot deformation behaviour and microstructural evolution of a superaustenitic stainless steel. Mater Sci Eng A 527(6):1605–1611Google Scholar
  84. 84.
    Quan GZ, Li GS, Chen T, Wang YX, Zhang YW, Zhou J (2011) Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates. Mater Sci Eng A 528(13–14):4643–4651Google Scholar
  85. 85.
    Quan G-Z, Mao A, Luo G-C, Liang J-T, Wu D-S, Zhou J (2013) Constitutive modeling for the dynamic recrystallization kinetics of as-extruded 3Cr20Ni10W2 heat-resistant alloy based on stress–strain data. Mater Des 52:98–107Google Scholar
  86. 86.
    Li Q, Wu A, Li Y, Wang G, Yan D, Liu J (2015) Mater Sci Eng A 623:38–48Google Scholar
  87. 87.
    Nový F, Janeček M, Král R (2009) J Alloys Compd 487:146–151Google Scholar
  88. 88.
    Wang J, Yi D, Su X, Yin F (2008) Mater Charact 59:965–968Google Scholar
  89. 89.
    Bai S, Liu Z, Li Y, Hou Y, Chen X (2010) Mater Sci Eng A 527:1806–1814Google Scholar
  90. 90.
    Zhang JB, Zhang YA, Zhu BH, Liu RQ, Wang F, Liang QM (2013) Mater Des 49:311–317Google Scholar
  91. 91.
    Vietz JT, Polmear IJ (1966) J Inst Met 94:410–419Google Scholar
  92. 92.
    Bai S, Zhou X, Liu Z, Xia P, Liu M, Zeng S (2014) Mater Sci Eng A 611:69–76Google Scholar
  93. 93.
    Liu XY, Pan QL, Zheng LY, Fu QR, Gao F, Li MX, Bai YM (2013) Mater Des 46:360–365Google Scholar
  94. 94.
    Xia QK, Liu ZY, Li YT (2008) Trans Nonferrous Metals Soc China 18:789–794Google Scholar
  95. 95.
    Hutchinson CR, Fan X, Pennycook SJ, Shiflet GJ (2001) Acta Mater 49:2827–2841Google Scholar
  96. 96.
    Reich L, Murayama M, Hono K (1998) Acta Mater 46:6053–6062Google Scholar
  97. 97.
    Ringer SP, Yeung W, Muddle BC, Polmear IJ (1994) Acta Metall 42:1715–1725Google Scholar
  98. 98.
    Gable BM, Zhu AW, Shiflet GJ, Starke EA Jr (2008) Comput Coupling Phase Diagrams Thermochem 32:256–267Google Scholar
  99. 99.
    Li K-J, Li Q-A, Jing X-T, Chen J, Zhang X-Y (2009a) Effects of Sb, Sm and Sn additions on the microstructure and mechanical properties of Mg–6Al–1.2Y–0.9Nd alloy. Rare Metals 28(5):516–522Google Scholar
  100. 100.
    Li WY, Yu M, Li JL, Zhang GF, Wang SY (2009b) Characterizations of 21-4N to 4Cr9Si2 stainless steel dissimilar joint bonded by electric-resistance-heat-aided friction welding. Mater Des 30:4230–4235Google Scholar
  101. 101.
    Lin YC, Chen MS, Zhong J (2008a) Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput Mater Sci 42(3):470–477Google Scholar
  102. 102.
    Lin YC, Chen MS, Zhong J (2008b) Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process. Comput Mater Sci 43(4):1117–1122Google Scholar
  103. 103.
    Liu WB, Zhang C, Xia ZX, Yang ZG (2014a) Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment. J Nucl Mater 455:402Google Scholar
  104. 104.
    Liu YQ, Wang LJ, Chou K (2014b) Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway. J Rare Earths 32(8):759Google Scholar
  105. 105.
    Liu XY, Pan QL, Zhang XL, Liang SX, Gao F, Zheng LY, Li MX (2014c) Mater Sci Eng A 599:160–165Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, School of Engineering and Engineering TechnologyFederal University of TechnologyMinnaNigeria

Personalised recommendations