Advertisement

Nanoscale Clay Minerals for Functional Ecomaterials: Fabrication, Applications, and Future Trends

  • Wenbo Wang
  • Aiqin WangEmail author
Reference work entry

Abstract

As the “from nature, for nature, and into nature” idea increasingly becomes popular, the naturally available nanomaterials have been especially concerned due to being safe, low-cost, sustainable, and harmless to human health and the ecological environment. Nanoscale clay minerals composed of safe Si, O, Al, and Mg elements are the broad class of naturally abundant inorganic materials, which have unique structure and diverse morphologies such as nanorods, nanofiber, nanotubes and nanosheets, special physicochemical properties, and ecofriendly advantages. The application of modern nanotechnology can disassociate or strip the clay minerals as nanosize units to produce silicate nanomaterials that have been honored as the materials of “greening twenty-first-century material world.” Compared with the artificial nanomaterials, natural nanomateirals are enjoying a surge in interest as the “building blocks” of high-performance functional materials, and they help improve the quality of the product, economize on the cost, and repair the polluted environment.

This chapter comprehensively expounds the structure, morphology, and physicochemical features of different types of clay minerals including palygorskite, sepiolite, halloysite, imogolite, kaolinite, montmorillonite, mica, vermiculite, chlorite, rectorite, and illite/smectite clay, as well as their applications as “green” components to fabricate functional ecomaterials. In addition, this chapter reports recent advances in the nanoscale dispersion, modifications, and nanocomposite techniques for the development of new functional materials. The future development trends of clay mineral-based functional materials and their potential applications in advanced functional materials were discussed in general by drawing from the scientific literatures. This chapter would arouse more attention for their applications in greening functional materials.

Keywords

Clay minerals Eco-materials Adsorbent Composites Nanomaterial Hydrothermal treatrment Acid activation Base treatment Surfactant modification Adsorption Pollutants Catalysis Superabsorbent Intercalation 

Abbreviations

AA

Acrylic acid

AAm-AMPS/MMT

Poly(acrylamide(AAm)-2-acrylamido-2-methylpropane sulfonic acid)/montmorillonite

Alginate-g-PAMPS/MMT

Alginate-g-2-acrylamido-2-methyl-1-propanesulfonic acid/Na+ montmorillonite(MMT)

AMPS

2-Acryloylamino-2-methyl-1-propanesulfonic acid)

APT

Attapulgite

ATP/P(AA-co-AM)

Attapulgite/poly(acrylic acid-co-acrylamide)

ATP/PAA

Attapulgite/poly(acrylic acid)

BCB

Brilliant cresyl blue

CMC-g-PAA/APT

Carboxymethyl cellulose-g-poly(acrylic acid)/attapulgite

CMC-g-PAA/MS

Carboxymethylcellulose-g-poly(sodium acrylate)/medical stone

CMC-g-PAA/REC

Carboxymethyl cellulose-graft-poly(acrylic acid)/rectorite

CMC-g–PNaA/APT

Carboxymethyl cellulose-g-poly(sodium acrylate)/attapulgite

CMC-g-poly(AA-co-AM-co-AMPS)/MMT

Carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide(AM)/2-acrylamido-2-methyl-1-propanesulfonic acid/montmorillonite

CMWS-g-PAA/APT

Wheat straw-g-poly(acrylic acid)/attapulgite

COBDS

Cyclo(4, 4-oxybis(benzene)disulfide) oligomers

COL-g-PAA-co-AM/MMT

Collagen-g-poly(sodium acrylate-co-acrylamide)/sodium montmorillonite

CTS-g-AA–IA/APT

Chitosan–graft-poly(acrylic acid–co-itaconic acid/attapulgite

CTS-g-PAA/APT

Chitosan-g-poly(acrylic acid)/attapulgite

CTS-g-PAA/BT

Chitosan-g-poly(acrylic acid)/biotite

CTS-g-PAA/kaolin

Chitosan-g-poly(acrylic acid)/kaolin

CTS-g-PAA/MMT

Chitosan-g-poly(acrylic acid)/montmorillonite

CTS-g-PAA/NONT

Chitosan-graft-poly(acrylic acid)/nontronite

CTS-g-PAA/OREC

Chitosan-g-poly(acrylic acid)/organo-Rectorite

CTS-g-PAA/REC

Chitosan-g-poly(acrylic acid)/rectorite

CTS-g-PAA/UVMT

Chitosan-graf-poly(acrylic acid)/unexpanded vermiculite

CTS-g-PAA/VMT

Chitosan-g-poly(acrylic acid)/vermiculite

CTS-g-PAAm/MMT

Chitosan-g-poly(acrylamide)/montmorillonite

CTS-g-PMAA/Bent

Poly(methacrylic acid)-grafted chitosan/bentonite

CV

Crystal violet

Dextrin-graft-AA/Na-MMT

Dextrin-graft-acrylic acid/montmorillonite

GG-g-P(NaA-co-St)/APT

Guar gum-graftpoly(sodium acrylate-co-styrene)/attapulgite

GG-g-P(NaA-co-St)/MVT

Guar gum-g-poly(sodium acrylate-co-styrene)/muscovite

GG-g-PAA/cloisite

Guar gum-g-poly(sodiu macrylate)/cloisite

GG-g-PAA/MS

Guar gum-g-poly(sodium acrylate)/medicinal stone

GG-g-PNaA/CTA+-REC

Guar gum-graft-poly(sodium acrylate)/organified rectorite

HEC-g-PAA/diatomite

Hydroxyethyl cellulose-g-poly(acrylic acid)/diatomite

HEC-g-PAA/MS

Hydroxyethyl cellulose-graft-poly(sodium acrylate)/medicinal stone

HEC-g-PAA/VMT

Hydroxyethyl cellulose-g-poly(acrylic acid)/vermiculite

HVMT

HCl-modified VMT

kC-g-PAA/Celite

κ-Carrageenan-g-poly(acrylic acid)/celite

LCL-g-PAA/MMT

Lignocellulose-g-poly(acrylic acid)/montmorillonite

MB

Methylene blue

MBA

N, N′-Methylenebisacrylamide

MG

Malachite green

MV

Methyl violet

NaAlg-g-p(AA-co-St)/I/S

Sodium alginate-g-poly(sodium acrylate-costyrene)/illite/smectite mixed-layer clays

NaAlg-g-p(AA-co-St)/organo-I/S

Sodium alginate-g-poly(sodium acrylate-co-styrene)/ illite/smectite clay

NaAlg-g-PAA/KAO

Alginate-g-poly(sodium acrylate)/kaolin

NaAlg-g-PAA/O-loess

Sodium alginate-g-poly(acrylic acid)/organo-loess

NaAlg-g-PNaA/APT

Sodium alginate-g-poly(sodium acrylate)/attapulgite

NaAlg-g-poly(AA-co-AAm)/MMT

Sodium alginate-g-poly(acrylic acid-co-acrylamide)/montmorillonite

NaAlg-g-poly(NaA-co-NaSS)/APT

Sodium alginate-g-poly(sodium acrylate-co-sodium p-styrenesulfonate)/attapulgite

NaAlg-g-poly(NaA-co-St)/APT

Sodium alginate-g-poly(sodium acrylate-co-styrene/attapulgite

NH4+-N

Ammonium nitrogen

NVMT

Na-exchangeable vermiculite

OB-Fe3O4 PSA

Organo-bentonite-Fe3O4 poly(sodiumacrylate)

Org-ATP/PAA

Organified attapulgite/poly(acrylic acid)

OVMT

Organo-vermiculite

P(AA-co-AM)/MMT/SH

poly(acrylic acid-co-acrylamide)/montmorillonite/sodium humate

P(AA-co-AMPS)/APT

Poly(acrylic acid-co-2-acryloylamino-2-methyl-1-propanesulfonic acid)/APT

PAA/APT

Poly(acrylic acid)/attapulgite

PAA/APT/SH

Poly(acrylic acid)/attapulgite/sodium humate

PAA/BT

Poly(acrylic acid)/biotite

PAA/BT

Poly(sodium acrylate)/bentonite

PAA/CMC-mMMT

Polyacrylate/(carboxymethylcellulose modified montmorillonite)

PAA/DTM

Poly(acrylic acid)/diatomite

PAA/IMMT

Poly(acrylic acid)/intercalated montmorillonite

PAA/MMT

Poly(acrylic acid)/montmorillonite

PAA/ST

Poly(sodium acrylate)/sepiolite

PAA/TM/PVA

Poly(acrylic acid)/tourmaline/polyvinyl alconol

PAA-AAm–HNT–GO

Poly(sodium acrylate-acrylamide)/graphene oxide/halloysite

PAA-AM/Al-MMT/SH

Poly(acrylic acid-acrylamide)/Al-montmorillonite/sodium humate

PAA-AM/BT

Poly(acrylate-co-acrylamide)/bentonite

PAA-AM/Ca-MMT/SH

Poly(acrylic acid-acrylamide)/Ca-montmorillonite/sodium humate

PAA-Am/EVMT

Poly(acrylate-co-acrylamide)/expanded vermiculite

PAA-AM/Li-MMT/SH

Poly(acrylic acid-acrylamide)/Li-montmorillonite/sodium humate

PAA-AM/Na-MMT/SH

Poly(acrylic acid-acrylamide)/Na-montmorillonite/sodium humate

PAA-AM/O-APT/SH

Poly(acrylamic acid-acrylamide)/organified attapulgite/sodium humate

PAA-AM/O-MMT/SH

Poly(acrylic acid-co-acrylamide)/organomontmorillonite/sodium humate

PAA-AM/SH/APT

Poly(acrylic acid-acrylamide)/sodium humate/attapulgite

PAA-AM-IA/MT

Poly(acrylic acid–co-acrylamide-co-itaconic acid/muscovite

PAA-co-2-DRAEMA/MMT

Poly(acrylic acid-co-2-(diethylamino)ethyl methacrylate)/montmorillonite

PAA-co-AM/KAO

Poly(acrylic acid-co-acrylamide)/kaolinite

PAA-co-PAM/CloisiteVR30B

Poly(acrylic acid-co-acrylamide)/cloisiteVR30B

PAA-co-VP/Lap

Poly(acrylic acid-co-N-vinyl-2-pyrrolodone)/laponite RDS

PAAm/Lap

Poly(acrylamide)/laponite

PAA-MAA/MMT

Poly(acrylic acid–methacrylic acid)/montmorillonite

PAAM-IANa/MMT

Poly(acrylamide–co-itaconic sodium)/montmorillonite

PAM/AAPT

Poly(acrylamide)/acid-treated attapulgite

PAM/APT

poly(acrylamide)/attapulgite

PAM/HAPT

Poly(acrylamide)/heat-treated attapulgite

PAM/Lap/SH

Poly(acrylamide)/laponite/sodium humate

PAM/PA

Polyacrylamide/palygorskite

PAM/SH/LAP

Poly(acrylamide)/sodium humate/laponite RD

PAM/SH/Lap

Poly(acrylamide)/sodium humate/Laponite RD

PAM-AA/MMT

Poly(acrylamide-co-acrylate/montmorillonite

PAM-IA/Mica

Poly(Acrylamide–itaconic acid)/mica

PAM-PVA/Cloisite

Poly(acrylamide-co-vinyl alcohol)/cloisite30B

PE-g-PAA/KAO

Polyethylene-g-poly(acrylic acid)/kaolin

PE-g-PAA-co-starch/OMMT

Polyethylene-g-poly(acrylic acid)-co-starch/organo-montmorillonite

PL-g-P(AA-AM)/OMMT

Potato leaves-g-poly(acrylic acid-co-acrylamide)/organified montmorillonite

PMAA-g-Cell/Bent

Poly(methacrylic acid)-grafted-cellulose/bentonite

PNaA/MMT

Poly(sodium acrylate)/montmorillonite

POBDS/VMT

Poly(4, 4-oxybis(benzene)disulfide)/vermiculite

poly(AA–AM/CTAB–MMT

Poly(acrylic acid-co-acrylamide)/ cetyl trimethyl ammonium bromide-modified montmorillonite

poly(AA–AM/DMAEA–DB–MMT

Poly(acrylic acid-co-acrylamide)/N,N′-dimethyl-N-dodecyl methacryloxylethyl ammonium bromide-modified montmorillonite

Poly(AA-co-AM)/APT

Poly(acrylic acid-co-acrylamide)/attapulgite

Poly(AA-co-AM)/HNTs

Poly(acrylic acid-co-acrylamide)/halloysite

PSSNa/MMT

Poly(sodium4-styrene sulfonate)/montmorillonite

P-St-AM/APT

Starch phosphate-graft-acrylamide/attapulgite

PSY-g-PAA/APT

Psyllium-g-Poly(acrylic acid)/attapulgite

PULL/PVA/MMT

Polysaccharide pullulan/polyvinyl alcohol/montmorillonite

SA/Na+REC

Sodium alginate/Na+-rectorite

SA/Na+-REC-g-PAA

Sodium alginate/Na+-rectorite-graft-poly acrylic acid

SA-g-AA/Na+REC

Sodium alginate-graft-acrylic acid/Na+rectorite

SA-g-P(AA-co-AMPS)/APT

Sodium alginate graft poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)/attapulgite

S-g-AA/MMT

Starch-graft-acrylic acid/montmorillonite

SS-g-PAA/APT

Silk sericin-g-poly(acrylic acid)/attapulgite

St-g-PAA/O-zeolite

Starch-g-poly(acrylic acid)/organo-Zeolite4A

St-g-PAA/zeolite

starch-g-poly(acrylic acid)/zeolite4A

St-g-PAM/APT

Starch-graft-poly(acrylamide)/attapulgite

St-g-PAM/KAO

Starch-graft-acrylamide/kaolinite

St-g-PAM/KAO

Starch-graft-polyacrylamide/kaolinite

St-g-PAM-AA/MMT

Starch-graft-poly-[acrylamide(AM)–acrylic acid(AA)]/montmorillonite

VMT

Vermiculite

Notes

Acknowledgments

The authors would like to thank National Natural Science Foundation of China (NO. 51403221, 21377135 and 41601303), the Key Research & Development Project of Gansu Provincial Sci. & Tech. Department, China (17YF1WA167) and the Youth Innovation Promotion Association CAS (2016370) for the financial support.

References

  1. 1.
    Thorkelsson K, Bai P, Xu T (2015) Self-assembly and applications of anisotropic nanomaterials: a review. Nano Today 10(1):48–66Google Scholar
  2. 2.
    Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143Google Scholar
  3. 3.
    Taka AL, Pillay K, Mbianda XY (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohyd Polym 159:94–107Google Scholar
  4. 4.
    Tian R, Liu H, Jiang Y, Chen J, Tan X, Liu G, Zhang L, Gu X, Guo Y, Wang H, Sun L, Chu W (2015) Drastically enhanced high-rate performance of carbon-coated LiFePO4 nanorods using a green chemical vapor deposition (CVD) method for lithium ion battery: a selective carbon coating process. ACS Appl Mater Interf 7(21):11377–11386Google Scholar
  5. 5.
    Tian J, Zhao Z, Kumar A, Boughton RI, Liu H (2014) Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev 43(20):6920–6937Google Scholar
  6. 6.
    Rao CNR, Müller A, Cheetham AK (2006) The chemistry of nanomaterials: synthesis, properties and applications. Wiley, WeinheimGoogle Scholar
  7. 7.
    Halada K, Yamamoto R (2001) The current status of research and development on ecomaterials around the world. MRS Bull 26(11):871–879Google Scholar
  8. 8.
    Nie Z (2015) Eco-materials and life-cycle assessment. In: Green and sustainable manufacturing of advanced material. Elsevier, Amsterdam, p 31Google Scholar
  9. 9.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994Google Scholar
  10. 10.
    Ruiz-Hitzky E, Darder M, Fernandes FM, Wicklein B, Alcântara AC, Aranda P (2013) Fibrous clays based bionanocomposites. Prog Polym Sci 38(10):1392–1414Google Scholar
  11. 11.
    Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35(7):902–958Google Scholar
  12. 12.
    Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38(10):1690–1719Google Scholar
  13. 13.
    Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay science. In: Handbook of clay science fundamentals, Developments in clay science, vol 1. Elsevier, Amsterdam, pp 1–18Google Scholar
  14. 14.
    Liu P (2007) Polymer modified clay minerals: a review. Appl Clay Sci 38(1):64–76Google Scholar
  15. 15.
    Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187Google Scholar
  16. 16.
    Zhou CH, Zhao LZ, Wang AQ, Chen TH, He HP (2016) Current fundamental and applied research into clay minerals in China. Appl Clay Sci 119:3–7Google Scholar
  17. 17.
    Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals–a review. Clay Miner 40(4):383–426Google Scholar
  18. 18.
    Jones BF, Galan E (1988) Sepiolite and palygorskite. Rev Mineral Geochem 19(1):631–674Google Scholar
  19. 19.
    Yuan P, Tan DY, Annabi-Bergayac F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93Google Scholar
  20. 20.
    Edelman CT, Favejee JCL (1940) On the crystal structure of montmorillonite and halloysite. Zeitschrift für Kristallographie-Crystalline Materials 102(1–6):417–431Google Scholar
  21. 21.
    Wang WB, Wang AQ (2016) Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Appl Clay Sci 119:18–30Google Scholar
  22. 22.
    Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079Google Scholar
  23. 23.
    Huang DJ, Wang WB, Xu JX, Wang AQ (2012) Mechanical and water resistance properties of chitosan/poly (vinyl alcohol) films reinforced with attapulgite dispersed by high-pressure homogenization. Chem Eng J 210:166–172Google Scholar
  24. 24.
    Ma J, Liu Q, Zhu L, Zou J, Wang K, Yang M, Komarneni S (2016) Visible light photocatalytic activity enhancement of Ag3PO4 dispersed on exfoliated bentonite for degradation of rhodamine B. Appl Catal B Environ 182:26–32Google Scholar
  25. 25.
    Sonawane S, Chaudhari P, Ghodke S, Ambade S, Gulig S, Mirikar A, Bane A (2008) Combined effect of ultrasound and nanoclay on adsorption of phenol. Ultrason Sonochem 15(6):1033–1037Google Scholar
  26. 26.
    Hassani A, Khataee A, Karaca S, Karaca M, Kıranşan M (2015) Adsorption of two cationic textile dyes from water with modified nanoclay: a comparative study by using central composite design. J Environ Chem Eng 3(4:2738–2749Google Scholar
  27. 27.
    Meira SMM, Jardim AI, Brandelli A (2015) Adsorption of nisin and pediocin on nanoclays. Food Chem 188:161–169Google Scholar
  28. 28.
    Liang X, Xu Y, Tan X, Wang L, Sun Y, Lin D, Wang Q (2013) Heavy metal adsorbents mercapto and amino functionalized palygorskite: preparation and characterization. Colloid Surface A 426:98–105Google Scholar
  29. 29.
    Zhou CH (2011) An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis. Appl Clay Sci 53(2):87–96Google Scholar
  30. 30.
    Iman M, Maji TK (2012) Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohyd polym 89(1):290–297Google Scholar
  31. 31.
    Drits VA, Sokolova GV (1971) Structure of palygorskite. Soviet Physics Crystallography 16:183–185Google Scholar
  32. 32.
    Bradley WF (1940) The structure scheme of attapulgite. Am Mineral 25:405–410Google Scholar
  33. 33.
    Galán E (1996) Properties and applications of palygorskite-sepiolite. Clay Clay Miner 31:443–454Google Scholar
  34. 34.
    Giustetto R, Chiari G (2004) Crystal structure refinements of palygorskite and Maya blue from molecular modeling and powder synchrotron diffraction. Eur J Miner 16:521–532Google Scholar
  35. 35.
    Bergaya F, Lagaly G (2013) Handbook of clay science, Developments in clay science, vol 5, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Rhouta B, Zatile E, Bouna L, Lakbita O, Maury F, Daoudi L, Lafont MC, Amjoud M, Senocq F, Jada A (2013) Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech high atlas (Morocco). Phys Chem Miner 40(5):411–424Google Scholar
  37. 37.
    Suárez M, García-Romero E (2006) FTIR spectroscopic study of palygorskite:influence of the composition of the octahedral sheet. Appl Clay Sci 31:154–163Google Scholar
  38. 38.
    Mckeown DA, Post JE, Etz ES (2002) Vibrational analysis of palygorskite and sepiolite. Clay Clay Miner 50:667–680Google Scholar
  39. 39.
    Chisholm JE (1990) An X-ray diffraction study of Palygorskite. Can Mineral 28:329–339Google Scholar
  40. 40.
    Chisholm JE (1992) Powder diffraction patterns and structural models of Palygorskite. Can Mineral 30:61–73Google Scholar
  41. 41.
    Galán E, Carretero MI (1999) A new approach to compositional limits for sepiolite and palygorskite. Clay Clay Miner 47:399–409Google Scholar
  42. 42.
    Suárez M, García-Romero E, del Río MS, Martinetto P, Dooryhée E (2007) The effect of octahedral cations on the dimensions of the palygorskite cell. Clay Miner 42:287–297Google Scholar
  43. 43.
    Chryssikos GD, Gionis V, Kacandes GH, Stathopoulou ET, Suarez M, Garcia-Romero E, del Rio MS (2009) Octahedral cation distribution in palygorskite. Am Mineral 94:200–203Google Scholar
  44. 44.
    Krekeler MPS, Guggenheim S (2008) Defects in microstructure in palygorskite–sepiolite minerals: a transmission electron microscopy (TEM) study. Appl Clay Sci 39:98–105Google Scholar
  45. 45.
    García-Romero E, Suárez M (2013) Sepiolite–palygorskite: textural study and genetic considerations. Appl Clay Sci 86:129–144Google Scholar
  46. 46.
    García-Romero E, Suárez M (2014) Sepiolite-palygorskite polysomatic series: oriented aggregation as a crystal growth mechanism in natural environments. Am Mineral 99:1653–1661Google Scholar
  47. 47.
    Corma A, Mifsud A, Sanz E (1987) Influence of the chemical composition and textural characteristics of palygorskite on the acid leaching of octahedral cations. Clay Miner 22:225–232Google Scholar
  48. 48.
    Barrios MS, Gonzhlez LVF, Rodriguez MAV, Pozas JMM (1995) Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties. Appl Clay Sci 10:247–258Google Scholar
  49. 49.
    Baltar CAM, Benvindo da Luz A, Baltar LM, de Oliveira CH, Bezerra FJ (2009) Influence of morphology and surface charge on the suitability of palygorskite as drilling fluid. Appl Clay Sci 42:597–600Google Scholar
  50. 50.
    Boudriche L, Chamayou A, Calvet R, Hamdi B, Balard H (2014) Influence of different dry milling processes on the properties of an attapulgite clay, contribution of inverse gas chromatography. Powder Technol 254:352–363Google Scholar
  51. 51.
    Chen L, Liu K, Jin TX, Chen F, Fu Q (2012) Rod like attapulgite/poly(ethylene terephthalate) nanocomposites with chemical bonding between the polymer chain and the filler. Express Polym Lett 6:629–638Google Scholar
  52. 52.
    Liu P, Zhu LX, Guo JS, Wang AQ, Zhao Y, Wang ZR (2014) Palygorskite/polystyrene nanocomposites via facile in-situ bulk polymerization: gelation and thermal properties. Appl Clay Sci 100:95–101Google Scholar
  53. 53.
    Xu JX, Wang WB, Wang AQ (2014) Enhanced microscopic structure and properties of palygorskite by associated extrusion and high-pressure homogenization process. Appl Clay Sci 95:365–370Google Scholar
  54. 54.
    Haden JWL (1963) Palygorskite: properties and uses. Clay Clay Miner 284–290Google Scholar
  55. 55.
    Gonzalez F, Pesquera C, Blanco C, Benito I, Mendioroz S, Pajares JA (1989) Structural and textural evolution of Al- and Mg-rich palygorskites, I. Under acid treatment. Appl Clay Sci 4:373–388Google Scholar
  56. 56.
    Windsor SA, Tinker MH (1999) Electro-fluorescence polarization studies of the interaction of fluorescent dyes with clay minerals in suspensions. Colloid Surface A 148:61–73Google Scholar
  57. 57.
    Abdo J, Haneef MD (2013) Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Appl Clay Sci 86:76–82Google Scholar
  58. 58.
    Chemeda YC, Christidis GE, Khan NMT, Koutsopoulou E, Hatzistamou V, Kelessidis VC (2014) Rheological properties of palygorskite–bentonite and sepiolite–bentonite mixed clay suspensions. Appl Clay Sci 90:165–174Google Scholar
  59. 59.
    Han J, YM X, Liang XF, YJ X (2014) Sorption stability and mechanism exploration of palygorskite as immobilization agent for cd in polluted soil. Water Air Soil Poll 225:2160Google Scholar
  60. 60.
    Tian GY, Wang WB, Zong L, Wang AQ (2017) MgO/palygorskite adsorbent derived from natural mg-rich brine and palygorskite for high-efficient removal of cd (II) and Zn (II) ions. J Environ Chem Eng 5(1):1027–1036Google Scholar
  61. 61.
    Papoulis D, Komarneni S, Panagiotaras D, Nikolopoulou A, Li HH, Shu Y, Tsugio S, Katsuki H (2013) Palygorskite–TiO2 nanocomposites: part 1. Synthesis and characterization. Appl Clay Sci 83–84:191–197Google Scholar
  62. 62.
    Huo CL, Yang HM (2013) Preparation and enhanced photocatalytic activity of Pd–CuO/palygorskite nanocomposites. Appl Clay Sci 74:87–94Google Scholar
  63. 63.
    Tan L, Tang A, Zou Y, Long M, Zhang Y, Ouyang J, Chen J (2017) Sb2Se3 assembling Sb2O3@ attapulgite as an emerging composites for catalytic hydrogenation of p-nitrophenol. Sci Rep 7:3281Google Scholar
  64. 64.
    Ruiz-Hitzky E, Darder M, Fernandes FM, Wicklein B, Alcântara ACS, Aranda P (2013) Fibrous clays based bionanocomposites. Prog Polym Sci 38:1392–1414Google Scholar
  65. 65.
    Tang QG, Wang F, Guo H, Yang Y, YL D, Liang JS, Zhang FQ (2015) Effect of coupling agent on surface free energy of organic modified attapulgite (OAT) powders and tensile strength of OAT/ethylene-propylene-diene monomer rubber nanocomposites. Powder Technol 270:92–97Google Scholar
  66. 66.
    Tian GY, Wang WB, Wang DD, Wang Q, Wang AQ (2017) Novel environment friendly inorganic red pigments based on attapulgite. Powder Technol 315:60–67Google Scholar
  67. 67.
    Wang Q, Zhang JP, Wang AQ (2014) Freeze-drying: a versatile method to overcome re-aggregation and improve dispersion stability of palygorskite for sustained release of ofloxacin. Appl Clay Sci 87:7–13Google Scholar
  68. 68.
    Luo SP, Chen Y, Zhou M, Yao C, Xi HT, Kong Y, Deng LH (2013) Palygorskite-poly(o-phenylenediamine) nanocomposite: an enhanced electrochemical platform for glucose biosensing. Appl Clay Sci 86:59–63Google Scholar
  69. 69.
    Lei H, Wei Q, Wang Q, Su A, Xue M, Liu Q, Hu Q (2017) Characterization of ginger essential oil/palygorskite composite (GEO-PGS) and its anti-bacteria activity. Mater Sci Eng C 73:381–387Google Scholar
  70. 70.
    Viseras C, Aguzzi C, Cerezo P, Lopez-Galindo A (2007) Uses of clay minerals in semisolid health care and therapeutic products. Appl Clay Sci 36:37–50Google Scholar
  71. 71.
    Lopez-Galindo A, Viseras C, Cerezo P (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci 36:51–63Google Scholar
  72. 72.
    Li ZH, Liu FH, GJ X, Zhang JL, Chu CY (2014) A kinetics-controlled coating method to construct 1D attapulgite @ amorphous titanium oxide nanocomposite with high electrorheological activity. Colloid Polym Sci 292:3327–3335Google Scholar
  73. 73.
    Galán E, Aparicio P, Miras A (2011) Chapter 16: Sepiolite and palygorskite as sealing materials for the geological storage of carbon dioxide. In: Galán E, Singer A (eds) Developments in Palygorskite-Sepiolite research. Elsevier, Amsterdam, pp 375–392Google Scholar
  74. 74.
    Zeng HF, Lin LJ, Xi YM, Han ZY (2017) Effects of raw and heated palygorskite on rumen fermentation in vitro. Appl Clay Sci 138:125–130Google Scholar
  75. 75.
    Guggenheim S, Krekeler MP (2011) The structures and microtextures of the palygorskite-sepiolite group minerals. Developments in Palygorskite-Sepiolite research (Galan E. & Singer A., editors). Developments in cay science 3: 3–32 Elsevier, AmsterdamGoogle Scholar
  76. 76.
    Guggenheim S, Eggleton RA (1988) Crystal chemistry, classification and identification of modulated layer silicates. Rev Mineral 19:675–725Google Scholar
  77. 77.
    Ferraris G, Makovicky E, Merlino S (2008) Crystallography of modular materials. IUCr. Oxford University Press, OxfordGoogle Scholar
  78. 78.
    Fernández-Saavedra R, Aranda P, Ruiz-Hitzky E (2004) Templated synthesis of carbon nanofibers from polyacrylonitrile using sepiolite. Adv Funct Mater 14(1):77–82Google Scholar
  79. 79.
    Bailey SW, Alietti A, Brindley GW, Formosa MLL, Jasmund K, Konta J, Mackenzie RC, Nagasawa K, Rausell-Colom RA, Zvyagin BB (1980) Summary of recommendations of AIPEA nomenclature committee. Clay Clay Miner 28(1):73–78Google Scholar
  80. 80.
    de Lima JA, Camilo FF, Faez R, Cruz SA (2017) A new approch to sepiolite dispersion by treatment with ionic liquids. Appl Clay Sci 143:234–240Google Scholar
  81. 81.
    Alkan M, Doğan M, Turhan Y, Demirbaş Ö, Turan P (2008) Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions. Chem Eng J 139(2):213–223Google Scholar
  82. 82.
    Tian GY, Wang WB, Kang YR, Wang AQ (2014) Study on thermal activated sepiolite for enhancing decoloration of crude palm oil. J Therm Anal Calorim 117(3):1211–1219Google Scholar
  83. 83.
    Zhou F, Yan C, Wang H, Zhou S, Komarneni S (2017) Sepiolite-TiO2 nanocomposites for photocatalysis: synthesis by microwave hydrothermal treatment versus calcination. Appl Clay Sci 146:246–253Google Scholar
  84. 84.
    Darder M, Matos CRS, Aranda P, Gouveia RF, Ruiz-Hitzky E (2017) Bionanocomposite foams based on the assembly of starch and alginate with sepiolite fibrous clay. Carbohyd Polym 157:1933–1939Google Scholar
  85. 85.
    Gao Y, Gan H, Zhang G, Guo Y (2013) Visible light assisted Fenton-like degradation of rhodamine B and 4-nitrophenol solutions with a stable poly-hydroxyl-iron/sepiolite catalyst. Chem Eng J 217:221–230Google Scholar
  86. 86.
    Degirmenbasi N, Boz N, Kalyon DM (2014) Biofuel production via transesterification using sepiolite-supported alkaline catalysts. Appl Catal B Environ 150:147–156Google Scholar
  87. 87.
    Ma Y, Zhang G (2016) Sepiolite nanofiber-supported platinum nanoparticle catalysts toward the catalytic oxidation of formaldehyde at ambient temperature: efficient and stable performance and mechanism. Chem Eng J 288:70–78Google Scholar
  88. 88.
    Benli B, Yalın C (2017) The influence of silver and copper ions on the antibacterial activity and local electrical properties of single sepiolite fiber: a conductive atomic force microscopy (C-AFM) study. Appl Clay Sci 146:449–456Google Scholar
  89. 89.
    Tian GY, Wang WB, Mu B, Wang Q, Wang AQ (2017) Cost-efficient, vivid and stable red hybrid pigments derived from naturally available sepiolite and halloysite. Ceram Int 43(2):1862–1869Google Scholar
  90. 90.
    Pappalardo S, Russo P, Acierno D, Rabe S, Schartel B (2016) The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur Polym J 76:196–207Google Scholar
  91. 91.
    Mahdavinia GR, Hosseini R, Darvishi F, Sabzi M (2016) The release of cefazolin from chitosan/polyvinyl alcohol/sepiolite nanocomposite hydrogel films. Iran Polym J 25(11):933–943Google Scholar
  92. 92.
    Xie YT, Wang AQ, Liu G (2010) Superabsorbent composite XXII: effects of modified sepiolite on water absorbency and swelling behavior of chitosan-g-poly (acrylic acid)/sepiolite superabsorbent composite. Polym Compos 31(1):89–96Google Scholar
  93. 93.
    Kara A, Tekin N, Alan A, Şafaklı A (2016) Physicochemical parameters of Hg (II) ions adsorption from aqueous solution by sepiolite/poly (vinylimidazole). J Environ Chem Eng 4(2):1642–1652Google Scholar
  94. 94.
    Liu Y, Zhao J, Deng CL, Chen L, Wang DY, Wang YZ (2011) Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system. Ind Eng Chem Res 50(4):2047–2054Google Scholar
  95. 95.
    Yuan P, Thill A, Bergaya F (2016) Nanosized tubular clay minerals: Halloysite and Imogolite, vol 7. Elsevier, AmsterdamGoogle Scholar
  96. 96.
    Yuan P, Southon PD, Liu Z, Green ME, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751Google Scholar
  97. 97.
    Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582Google Scholar
  98. 98.
    Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112:75–93Google Scholar
  99. 99.
    Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525Google Scholar
  100. 100.
    Mitra GB (2013) Spiral structure of 7 Å halloysite: mathematical models. Clay Clay Miner 61:499–507Google Scholar
  101. 101.
    Keeling JL (2015) The mineralogy, geology and occurrences of halloysite. In: Pasbakhsh P, Churchman GJ (eds) Natural mineral nanotubes. Apple Academic Press, Oakville, pp 95–115Google Scholar
  102. 102.
    Dong Y, Marshall J, Haroosh HJ, Mohammadzadehmoghadam S, Liu D, Qi X, Lau KT (2015) Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: influence of HNT content and modification. Compos A: Appl Sci Manufact 76:28–36Google Scholar
  103. 103.
    Ghanbari M, Emadzadeh D, Lau WJ, Lai SO, Matsuura T, Ismail AF (2015) Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination 358:33–41Google Scholar
  104. 104.
    Zhu K, Duan Y, Wang F, Gao P, Jia H, Ma C, Wang C (2017) Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. Chem Eng J 311:236–246Google Scholar
  105. 105.
    Carrillo AM, Carriazo JG (2015) Cu and co oxides supported on halloysite for the total oxidation of toluene. Appl Catal B Environ 164:443–452Google Scholar
  106. 106.
    Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250Google Scholar
  107. 107.
    Bonifacio MA, Gentile P, Ferreira AM, Cometa S, De Giglio E (2017) Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohyd Polym 163:280–291Google Scholar
  108. 108.
    Smith RJ, Holder KM, Ruiz S, Hahn W, Song Y, Lvov YM, Grunlan JC (2017) Environmentally benign Halloysite nanotube multilayer assembly significantly reduces polyurethane flammability. Adv Funct Mater.  https://doi.org/10.1002/adfm.201703289Google Scholar
  109. 109.
    Jin J, Fu L, Yang H, Ouyang J (2015) Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities. Sci Rep 5:12429Google Scholar
  110. 110.
    Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216Google Scholar
  111. 111.
    Ganganboina AB, Chowdhury AD, Doong RA (2017) Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor. Electrochim Acta 245:912–923Google Scholar
  112. 112.
    Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1719Google Scholar
  113. 113.
    Pasbakhsh P, Churchman GJ, Keeling JL (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci 74:47–57Google Scholar
  114. 114.
    Liu QF, Li XG, Cheng HF (2016) Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls. Appl Clay Sci 124-125:175–182Google Scholar
  115. 115.
    Yamamoto K, Otsuka H, Wada SI, Sohn D, Takahara A (2005) Transparent polymer nanohybrid prepared by in situ synthesis of aluminosilicate nanofibers in poly (vinyl alcohol) solution. Soft Matter 1(5):372–377Google Scholar
  116. 116.
    Yang H, Wang C, Su Z (2008) Growth mechanism of synthetic imogolite nanotubes. Chem Mater 20(13):4484–4488Google Scholar
  117. 117.
    Lourenco MP, Guimaraes L, da Silva MC, de Oliveira C, Heine T, Duarte HA (2014) Nanotubes with well-defined structure: single-and double-walled imogolites. J Phys Chem C 118(11):5945–5953Google Scholar
  118. 118.
    Ackerman WC, Smith DM, Huling JC, Kim YW, Bailey JK, Brinker CJ (1993) Gas/vapor adsorption in imogolite: a microporous tubular aluminosilicate. Langmuir 9(4):1051–1057Google Scholar
  119. 119.
    Imamura S, Hayashi Y, Kajiwara K, Hoshino H, Kaito C (1993) Imogolite: a possible new type of shape-selective catalyst. Ind Eng Chem Res 32(4):600–603Google Scholar
  120. 120.
    Yah WO, Yamamoto K, Jiravanichanun N, Otsuka H, Takahara A (2010) Imogolite reinforced nanocomposites: multifaceted green materials. Materials 3(3):1709–1745Google Scholar
  121. 121.
    Lee H, Ryu J, Kim D, Joo Y, Lee SU, Sohn D (2013) Preparation of an imogolite/poly (acrylic acid) hybrid gel. J Colloid Interf Sci 406:165–171Google Scholar
  122. 122.
    Bottero I, Bonelli B, Ashbrook SE, Wright PA, Zhou W, Tagliabue M, Armandi M, Garrone E (2011) Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and their behaviour towards methane adsorption. Phys Chem Chem Phys 13(2):744–750Google Scholar
  123. 123.
    Zanzottera C, Armandi M, Esposito S, Garrone E, Bonelli B (2012) CO2 adsorption on aluminosilicate single-walled nanotubes of imogolite type. J Phys Chem C 116(38):20417–20425Google Scholar
  124. 124.
    Ma W, Yah WO, Otsuka H, Takahara A (2012) Application of imogolite clay nanotubes in organic–inorganic nanohybrid materials. J Mater Chem 22(24):11887–11892Google Scholar
  125. 125.
    Ma W, Otsuka H, Takahara A (2011) Preparation and properties of PVC/PMMA-g-imogolite nanohybrid via surface-initiated radical polymerization. Polymer 52(24):5543–5550Google Scholar
  126. 126.
    Avellan A, Levard C, Chaneac C, Borschneck D, Onofri FR, Rose J, Masion A (2016) Accelerated microwave assisted synthesis of alumino-germanate imogolite nanotubes. RSC Adv 6(109):108146–108150Google Scholar
  127. 127.
    Thomas B, Coradin T, Laurent G, Valentin R, Mouloungui Z, Babonneau F, Baccile N (2012) Biosurfactant-mediated one-step synthesis of hydrophobic functional imogolite nanotubes. RSC Adv 2:426–435Google Scholar
  128. 128.
    Chemmi A, Brendlé J, Marichal C, Lebeau B (2013) A novel fluoride route for the synthesis of aluminosilicate nanotubes. Nano 3(1):117–125Google Scholar
  129. 129.
    Avellan A, Levard C, Chaneac C, Borschneck D, Onofri FR, Rose J, Masion A (2016) Accelerated microwave assisted synthesis of alumino-germanate imogolite nanotubes. RSC Adv 6(109):108146–108150Google Scholar
  130. 130.
    Amara MS, Paineau E, Bacia-Verloop M, Krapf MEM, Davidson P, Belloni L, Levard C, Rose J, Launois P, Thill A (2013) Single-step formation of micron long (OH)3Al2O3Ge(OH) imogolite-like nanotubes. Chem Commun 49(96):11284–11286Google Scholar
  131. 131.
    Avellan A, Levard C, Kumar N, Rose J, Olivi L, Thill A, Chaurand P, Borschneck D, Masion A (2014) Structural incorporation of iron into Ge–imogolite nanotubes: a promising step for innovative nanomaterials. RSC Adv 4(91):49827–49830Google Scholar
  132. 132.
    Shafia E, Esposito S, Manzoli M, Chiesa M, Tiberto P, Barrera G, Menard G, Allia P, Freyria FS, Garrone E, Bonelli B (2015) Al/Fe isomorphic substitution versus Fe2O3 clusters formation in Fe-doped aluminosilicate nanotubes (imogolite). J Nanopart Res 17(8):336Google Scholar
  133. 133.
    Murray HH (2007) Applied clay mineralogy: occurrences, processing and application of Kaolins, Bentonites, Palygorskite-Sepiolite, and common clays. Elsevier, AmsterdamGoogle Scholar
  134. 134.
    Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interf Sci 140(2):114–131Google Scholar
  135. 135.
    Deer WA, Howie RA, Zussman J (1985) An introduction to the rock-forming minerals. Longman, Harlow, pp 260–263Google Scholar
  136. 136.
    Arora A, Padua G (2010) Review: nanocomposites in food packaging. J Food Sci 75:43–49Google Scholar
  137. 137.
    Azeredo HMCD (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253Google Scholar
  138. 138.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204Google Scholar
  139. 139.
    Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interf Sci 140(2):114–131Google Scholar
  140. 140.
    Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155Google Scholar
  141. 141.
    Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221Google Scholar
  142. 142.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng R 28:1–63Google Scholar
  143. 143.
    Zhang K, Xu J, Wang KY, Cheng L, Wang J, Liu B (2009) Preparation and characterization of chitosan nanocomposites with vermiculite of different modification. Polym Degrad Stab 94(12):2121–2127Google Scholar
  144. 144.
    Dorado AD, Lafuente FJ, Gabriel D, Gamisans X (2010) A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ Technol 31(2):193–204Google Scholar
  145. 145.
    Priolo MA, Holder KM, Greenlee SM, Grunlan JC (2012) Transparency, gas barrier, and moisture resistance of large-aspect-ratio vermiculite nanobrick wall thin films. ACS Appl Mater Interf 4(10):5529–5533Google Scholar
  146. 146.
    Dultz S, An JH, Riebe B (2012) Organic cation exchanged montmorillonite and vermiculite as adsorbents for Cr (VI): effect of layer charge on adsorption properties. Appl Clay Sci 67:125–133Google Scholar
  147. 147.
    Wang WB, Zhai NH, Wang AQ (2011) Preparation and swelling characteristics of a superabsorbent nanocomposite based on natural guar gum and cation-modified vermiculite. J Appl Polym Sci 119(6):3675–3686Google Scholar
  148. 148.
    Liu Y, He Z, Zhou L, Hou Z, Eli W (2013) Simultaneous oxidative conversion and CO2 reforming of methane to syngas over Ni/vermiculite catalysts. Catal Commun 42:40–44Google Scholar
  149. 149.
    Qian Y, Lindsay CI, Macosko C, Stein A (2011) Synthesis and properties of vermiculite-reinforced polyurethane nanocomposites. ACS Appl Mater Interf 3(9):3709–3717Google Scholar
  150. 150.
    Dorel S (2000) Nanostructuration de la muscovite. Ph.D. Thesis, Lab. d’Orsay, Université de Paris, FranceGoogle Scholar
  151. 151.
    Sivakumar T, Krithiga T, Shanthi K, Mori T, Kubo J, Morikawa Y (2004) Noble metals intercalated/supported mica catalyst–synthesis and characterization. J Mol Catal A Chem 223(1):185–194Google Scholar
  152. 152.
    De CP, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clay Clay Miner 41(2):219–239Google Scholar
  153. 153.
    Dowey PJ, Hodgson DM, Worden RH (2012) Pre-requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs: a review of subsurface examples. Mar Petrol Geol 32(1):63–75Google Scholar
  154. 154.
    Worden RH, Morad S (2003) Clay minerals in sandstones: controls on formation, distribution and evolution. Blackwell, Oxford, UK, pp 1–41Google Scholar
  155. 155.
    Bethke CM, Reynolds RC (1986) Recursive method for determining frequency factors in interstratified clay diffraction calculations. Clay Clay Miner 34:224–226Google Scholar
  156. 156.
    Drits VA, Dainyak LG, Muller F, Besson G, Manceau A (1997) Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mossbauer and EXAFS spectroscopies. Clay Miner 32:153–179Google Scholar
  157. 157.
    Drits VA, Lindgreen H, Salyn AL (1997) Determination by XRD of content and distribution of fixed ammonium in illite-smectite. Application to North Sea illite-smectite. Am Mineral 82:80–88Google Scholar
  158. 158.
    Reynolds RC (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 249–303Google Scholar
  159. 159.
    Wang X, Du Y, Luo J, Lin B, Kennedy JF (2007) Chitosan/organic rectorite nanocomposite films: structure, characteristic and drug delivery behaviour. Carbohyd Polym 69(1):41–49Google Scholar
  160. 160.
    Wang X, Du Y, Luo J, Yang J, Wang W, Kennedy JF (2009) A novel biopolymer/rectorite nanocomposite with antimicrobial activity. Carbohyd Polym 77(3):449–456Google Scholar
  161. 161.
    Huang Y, Ma X, Liang G, Yan H (2008) Adsorption of phenol with modified rectorite from aqueous solution. Chem Eng J 141:1): 1–1): 8Google Scholar
  162. 162.
    Wang N, Feng Z, Ma X, Zheng P (2017) The modification of rectorite with carbon layers and trisodium trimetaphosphate for the removal of Pb2+. Appl Clay Sci 146:115–121Google Scholar
  163. 163.
    Chen Y, Fang J, Lu S, Wu Y, Chen D, Huan L, Zhu XM, Ren L, Cheng C, Fang Z (2015) Plasmonic ag-pillared rectorite as catalyst for degradation of 2, 4-DCP in the H2O2-containing system under visible light irradiation. J Hazard Mater 297:278–285Google Scholar
  164. 164.
    Jin J, Tu H, Chen J, Cheng G, Shi X, Deng H, Li Z, Du Y (2017) Rectorite-intercalated nanoparticles for improving controlled release of doxorubicin hydrochloride. Int J Biol Macromol 101:815–822Google Scholar
  165. 165.
    Wang Y, Zhang H, Wu Y, Yang J, Zhang L (2005) Preparation, structure, and properties of a novel rectorite/styrene–butadiene copolymer nanocomposite. J Appl Polym Sci 96(2):324–328Google Scholar
  166. 166.
    Altaner SP, Weiss CA, Kirkpatrick RJ (1988) Evidence from 29Si NMR for the structure of mixed-layer illite/smectite clay minerals. Nature 331:699–702Google Scholar
  167. 167.
    Altaner SP, Ylagan RF (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clay Clay Miner 45(4):517–533Google Scholar
  168. 168.
    Missana T, Garcia-Gutierrez M, Alonso U (2008) Sorption of strontium onto illite/smectite mixed clays. Phys Chem Earth Parts A/B/C 33:S156–S162Google Scholar
  169. 169.
    Buchwald A, Hohmann M, Posern K, Brendler E (2009) The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl Clay Sci 46(3):300–304Google Scholar
  170. 170.
    Wang YZ, Wang WB, Wang AQ (2013) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J 228:132–139Google Scholar
  171. 171.
    Huertas FJ, Huertas F, Linares J (1993) Hydrothermal synthesis of kaolinite: method and characterization of synthetic materials. Appl Clay Sci 7(5):345–356Google Scholar
  172. 172.
    Zhang D, Zhou CH, Lin CX, Tong DS, WH Y (2010) Synthesis of clay minerals. Appl Clay Sci 50(1):1–11Google Scholar
  173. 173.
    Vicente I, Salagre P, Cesteros Y, Medina F, Sueiras JE (2010) Microwave-assisted synthesis of saponite. Appl Clay Sci 48(1):26–31Google Scholar
  174. 174.
    Torii K, Iwasaki T (1987) Synthesis of hectorite. Clay Sci 7(1):1–16Google Scholar
  175. 175.
    Kloprogge JT, Komarneni S, Amonette JE (1999) Synthesis of smectite clay minerals: a critical review. Clay Clay Miner 47(5):529–554Google Scholar
  176. 176.
    Lantenois S, Champallier R, Bény JM, Muller F (2008) Hydrothermal synthesis and characterization of dioctahedral smectites: a montmorillonites series. Appl Clay Sci 38(3):165–178Google Scholar
  177. 177.
    Levinson AA, Day JJ (1968) Low temperature hydrothermal synthesis of montmorillonite. Ammonium-micas and ammonium-zeolites. Earth Planet Sci Lett 5:52–54Google Scholar
  178. 178.
    Reichle WT (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics 22(1):135–141Google Scholar
  179. 179.
    Golden DC, Dixon JB, Shadfan H, Kippenberger LA (1985) Palygorskite and sepiolite alteration to smectite under alkaline conditions. Clay Clay Miner 33(1):44–50Google Scholar
  180. 180.
    Wang WB, Zhang ZF, Tian GY, Wang AQ (2015) From nanorods of palygorskite to nanosheets of smectite via a one-step hydrothermal process. RSC Adv 5(72):58107–58115Google Scholar
  181. 181.
    Liu Y, Wang WB, Wang AQ (2012) Effect of dry grinding on the microstructure of palygorskite and adsorption efficiency for methylene blue. Powder Technol 225:124–129Google Scholar
  182. 182.
    Darvishi Z, Morsali A (2011) Sonochemical preparation of palygorskite nanoparticles. Appl Clay Sci 51:51–53Google Scholar
  183. 183.
    Boudriche L, Calvet R, Hamdi B, Balard H (2012) Surface properties evolution of attapulgite by IGC analysis as a function of thermal treatment. Colloid Surface A 399:1–10Google Scholar
  184. 184.
    Xu JX, Zhang JP, Wang Q, Wang AQ (2011) Disaggregation of palygorskite crystal bundles via high-pressure homogenization. Appl Clay Sci 54(1):118–123Google Scholar
  185. 185.
    Xu JX, Wang WB, Wang AQ (2013) A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder Technol 249:157–162Google Scholar
  186. 186.
    Xu JX, Wang WB, Wang AQ (2014) Effect of squeeze, homogenization, and freezing treatments on particle diameter and rheological properties of palygorskite. Adv Powder Technol 25(3):968–977Google Scholar
  187. 187.
    Wang WB, Wang FF, Kang YR, Wang AQ (2015) Nanoscale dispersion crystal bundles of palygorskite by associated modification with phytic acid and high-pressure homogenization for enhanced colloidal properties. Powder Technol 269:85–92Google Scholar
  188. 188.
    Xu JX, Wang WB, Wang AQ (2013) Effects of solvent treatment and high-pressure homogenization process on dispersion properties of palygorskite. Powder Technol 235:652–660Google Scholar
  189. 189.
    Xu JX, Wang WB, Wang AQ (2014) Dispersion of palygorskite in ethanol–water mixtures via high-pressure homogenization: microstructure and colloidal properties. Powder Technol 261:98–104Google Scholar
  190. 190.
    Xu JX, Wang WB, Wang AQ (2013) Superior dispersion properties of palygorskite in dimethyl sulfoxide via high-pressure homogenization process. Appl Clay Sci 86:174–178Google Scholar
  191. 191.
    Zhou F, Yan C, Zhang Y, Tan J, Wang H, Zhou S, Pu S (2016) Purification and defibering of a Chinese sepiolite. Appl Clay Sci 124:119–126Google Scholar
  192. 192.
    de Lima JA, Camilo FF, Faez R, Cruz SA (2017) A new approch to sepiolite dispersion by treatment with ionic liquids. Appl Clay Sci 143:234–240Google Scholar
  193. 193.
    Liu J, Boo WJ, Clearfield A, Sue HJ (2006) Intercalation and exfoliation: a review on morphology of polymer nanocomposites reinforced by inorganic layer structures. Mater Manuf Process 21(2):143–151Google Scholar
  194. 194.
    Deng H, Lin P, Xin S, Huang R, Li W, Du Y, Zhou X, Yang J (2012) Quaternized chitosan-layered silicate intercalated composites based nanofibrous mats and their antibacterial activity. Carbohyd Polym 89(2):307–313Google Scholar
  195. 195.
    Li Z, Jiang WT, Chen CJ, Hong H (2010) Influence of chain lengths and loading levels on interlayer configurations of intercalated alkylammonium and their transitions in rectorite. Langmuir 26(11):8289–8294Google Scholar
  196. 196.
    De Cristofaro A, Violante A (2001) Effect of hydroxy-aluminium species on the sorption and interlayering of albumin onto montmorillonite. Appl Clay Sci 19(1):59–67Google Scholar
  197. 197.
    Xu S, Zhang S, Yang J (2008) An amphoteric semi-IPN nanocomposite hydrogels based on intercalation of cationic polyacrylamide into bentonite. Mater Lett 62(24):3999–4002Google Scholar
  198. 198.
    Huang X, Xu S, Zhong M, Wang J, Feng S, Shi R (2009) Modification of Na-bentonite by polycations for fabrication of amphoteric semi-IPN nanocomposite hydrogels. Appl Clay Sci 42(3):455–459Google Scholar
  199. 199.
    Chiu CW, Huang TK, Wang YC, Alamani BG, Lin JJ (2014) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39(3):443–485Google Scholar
  200. 200.
    Monvisade P, Siriphannon P (2009) Chitosan intercalated montmorillonite: preparation, characterization and cationic dye adsorption. Appl Clay Sci 42(3):427–431Google Scholar
  201. 201.
    Huskić M, Žigon M (2007) PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. Eur Polym J 43(12):4891–4897Google Scholar
  202. 202.
    Du X, Xiao M, Meng Y, Hay AS (2004) Synthesis of poly (arylene disulfide)–vermiculite nanocomposites via in situ ring-opening polymerization of macrocyclic oligomers. Polym Int 53(6):789–793Google Scholar
  203. 203.
    Wang WB, Wang AQ (2009) Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohyd Polym 77(4):891–897Google Scholar
  204. 204.
    Frost RL, Mako E, Kristóf J, Kloprogge JT (2002) Modification of kaolinite surfaces through mechanochemical treatment—a mid-IR and near-IR spectroscopic study. Spectrochim Acta A 58(13):2849–2859Google Scholar
  205. 205.
    Pérez-Maqueda LA, De Haro MCJ, Poyato J, Pérez-Rodríguez JL (2004) Comparative study of ground and sonicated vermiculite. J Mater Sci 39(16):5347–5351Google Scholar
  206. 206.
    Djukić A, Jovanović U, Tuvić T, Andrić V, Novaković JG, Ivanović N, Matović L (2013) The potential of ball-milled Serbian natural clay for removal of heavy metal contaminants from wastewaters: simultaneous sorption of Ni, Cr, cd and Pb ions. Ceram Int 39(6):7173–7178Google Scholar
  207. 207.
    Maleki S, Karimi-Jashni A (2017) Effect of ball milling process on the structure of local clay and its adsorption performance for Ni (II) removal. Appl Clay Sci 137:213–224Google Scholar
  208. 208.
    Yoshimoto S, Ohashi F, Ohnishi Y, Nonami T (2004) Synthesis of polyaniline–montmorillonite nanocomposites by the mechanochemical intercalation method. Syn Met 145(2):265–270Google Scholar
  209. 209.
    Polette-Niewold LA, Manciu FS, Torres B, Alvarado M, Chianelli RR (2007) Organic/inorganic complex pigments: ancient colors Maya blue. J Inorg Biochem 101(11):1958–1973Google Scholar
  210. 210.
    Wu W, SC L (2003) Mechano-chemical surface modification of calcium carbonate particles by polymer grafting. Powder Technol 137(1):41–48Google Scholar
  211. 211.
    Voronov A, Kohut A, Synytska A, Peukert W (2007) Mechanochemical modification of silica with poly (1-vinyl-2-pyrrolidone) by grinding in a stirred media mill. J Appl Polym Sci 104(6):3708–3714Google Scholar
  212. 212.
    Al-Futaisi A, Jamrah A, Al-Hanai R (2007) Aspects of cationic dye molecule adsorption to palygorskite. Desalination 214:327–342Google Scholar
  213. 213.
    Louati S, Hajjaji W, Baklouti S, Samet B (2014) Structure and properties of new eco-material obtained by phosphoric acid attack of natural Tunisian clay. Appl Clay Sci 101:60–67Google Scholar
  214. 214.
    Temuujin J, Senna M, Jadambaa T, Burmaa D, Erdenechimeg S, MacKenzie KJD (2006) Characterization and bleaching properties of acid-leached montmorillonite. J Chem Technol Biotechnol 81:688–693Google Scholar
  215. 215.
    Temuujin J, Senna M, Jadambaa T, Burmaa D, Erdenechimeg S, MacKenzie KJD (2006) Characterization and bleaching properties of acid-leached montmorillonite. J Chem Technol Biotechnol 81:688–693Google Scholar
  216. 216.
    Kilislioglu A, Aras G (2010) Adsorption of uranium from aqueous solution on heat and acid treated sepiolites. Appl Radiat Isot 68:2016–2019Google Scholar
  217. 217.
    Chaari I, Fakhfakh E, Chakroun S, Bouzid J, Boujelben N, Feki M, Rocha F, Jamoussi F (2008) Lead removal from aqueous solutions by a Tunisian smectitic clay. J Hazard Mater 156:545–551Google Scholar
  218. 218.
    Panda AK, Mishra BG, Mishra DK, Singh RK (2010) Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloid Surf A 363:98–104Google Scholar
  219. 219.
    Alkan M, Kalay B, Dogan M, Demirbas O (2008) Removal of copper ions from aqueous solutions by kaolinite and batch design. J Hazard Mater 153:867–876Google Scholar
  220. 220.
    Sennour R, Mimane G, Benghalem A, Taleb S (2009) Removal of the persistent pollutant chlorobenzene by adsorption onto activated montmorillonite. Appl Clay Sci 43:503–506Google Scholar
  221. 221.
    Toor M, Jin B (2012) Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J 187:79–88Google Scholar
  222. 222.
    Mana M, Ouali MS, Lindheimer M, de Menorval LC (2008) Removal of lead from aqueous solutions with a treated spent bleaching earth. J Hazard Mater 159:358–364Google Scholar
  223. 223.
    Owabor CN, Ono UM, Isuekevbo A (2012) Enhanced sorption of naphthalene onto a modified clay adsorbent: effect of acid, base and salt modifications of clay on sorption kinetics. Adv Chem Eng Sci 2:330–335Google Scholar
  224. 224.
    Owabor CN, Ono UM, Isuekevbo A (2012) Enhanced sorption of naphthalene onto a modified clay adsorbent: effect of acid, base and salt modifications of clay on sorption kinetics. Adv Chem Eng Sci 2:330–335Google Scholar
  225. 225.
    Lakevičs V, Stepanova V, Skuja L, Dušenkova I, Ruplis A (2014) Influence of alkali and acidic treatment on sorption properties of Latvian illite clays. Key Eng Mater 604:71–74Google Scholar
  226. 226.
    Wang WB, Wang FF, Kang YR, Wang AQ (2015) Enhanced adsorptive removal of methylene blue from aqueous solution by alkali-activated palygorskite. Water Air Soil Pollut 226(3):83Google Scholar
  227. 227.
    Akpomie KG, Dawodu FA (2014) Efficient abstraction of nickel (II) and manganese (II) ions from solution onto an alkaline-modified montmorillonite. J Taibah Univ Sci 8(4):343–356Google Scholar
  228. 228.
    Öztop B, Shahwan T (2006) Modification of a montmorillonite–illite clay using alkaline hydrothermal treatment and its application for the removal of aqueous Cs+ ions. J Colloid Interface Sci 295(2):303–309Google Scholar
  229. 229.
    Lihareva N, Dimova L, Petrov O, Tzvetanova Y (2010) Ag+ sorption on natural and Na-exchanged clinoptilolite from eastern Rhodopes, Bulgaria. Microporous Mesoporous Mater 130:32–37Google Scholar
  230. 230.
    Coruh S (2008) The removal of zinc ions by natural and conditioned clinoptilolites. Desalination 225:41–57Google Scholar
  231. 231.
    Ma YL, ZR X, Guo T, You P (2004) Adsorption of methylene blue on cu (II)-exchanged montmorillonite. J Colloid Interf Sci 280(2):283–288Google Scholar
  232. 232.
    Huang FC, Lee JF, Lee CK, Tseng WN, Juang LC (2002) Effects of exchange titanium cations on the pore structure and adsorption characteristics of montmorillonite. J Colloid Interf Sci 256(2):360–366Google Scholar
  233. 233.
    Wang CC, Juang LC, Hsu TC, Lee CK, Lee JF, Huang FC (2004) Adsorption of basic dyes onto montmorillonite. J Colloid Interf Sci 273(1):80–86Google Scholar
  234. 234.
    Ye H, Chen F, Sheng Y, Sheng G, Fu J (2006) Adsorption of phosphate from aqueous solution onto modified palygorskites. Sep Purif Technol 50:283–290Google Scholar
  235. 235.
    Gan F, Zhou J, Wang H, Du C, Chen X (2009) Removal of phosphate from aqueous solution by thermally treated natural palygorskite. Water Res 43:2907–2915Google Scholar
  236. 236.
    Kuang W, Facey GA, Detellier C (2004) Dehydration and rehydration of palygorskite and the influence of water on the nanopores. Clay Clay Miner 52:635–642Google Scholar
  237. 237.
    Chen T, Liu H, Li J, Chen D, Chang D, Kong D, Frost RL (2011) Effect of thermal treatment on adsorption–desorption of ammonia and sulfur dioxide on palygorskite: change of surface acid-alkali properties. Chem Eng J 166:1017–1021Google Scholar
  238. 238.
    Chen H, Zhao J, Zhong A, Jin Y (2011) Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chem Eng J 174(1):143–150Google Scholar
  239. 239.
    Shariatmadari H, Mermut AR, Benke MB (1999) Sorption of selected cationic and neutral organic molecules on palygorskite and sepiolite. Clay Clay Miner 47:44–53Google Scholar
  240. 240.
    Sabah E, Turan M, Celik MS (2002) Adsorption mechanism of cationic surfactants onto acid-and heat-activated sepiolites. Water Res 36(16):3957–3964Google Scholar
  241. 241.
    Koswojo R, Utomo RP, Ju YH, Ayucitra A, Soetaredjo FE, Sunarso J, Ismadji S (2010) Acid green 25 removal from wastewater by organo-bentonite from Pacitan. Appl Clay Sci 48:81–86Google Scholar
  242. 242.
    Chen J, Li G, He Z, An T (2011) Adsorption and degradation of model volatile organic compounds by a combined titania–montmorillonite–silica photocatalyst. J Hazard Mater 190:416–423Google Scholar
  243. 243.
    Huang J, Wang X, Jin Q, Liu Y, Wang Y (2007) Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite. J Environ Manag 84:229–236Google Scholar
  244. 244.
    Yilmaz N, Yapar S (2004) Adsorption properties of tetradecyl and hexadecyl trimethylammonium bentonites. Appl Clay Sci 27:223–228Google Scholar
  245. 245.
    Singla P, Mehta R, Upadhyay SN (2012) Clay modification by the use of organic cations. Green Sustain Chem 2:21–25Google Scholar
  246. 246.
    Anirudhan TS, Ramachandran M (2007) Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters. Appl Clay Sci 35:276–281Google Scholar
  247. 247.
    Hedley CB, Yuan G, Theng BKG (2007) Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Appl Clay Sci 35:180–188Google Scholar
  248. 248.
    Kan T, Jiang X, Zhou L, Yang M, Duan M, Liu P, Jiang X (2011) Removal of methyl orange from aqueous solutions using a bentonite modified with a new Gemini surfactant. Appl Clay Sci 54:184–187Google Scholar
  249. 249.
    Zhu J, Wang T, Zhu R, Ge F, Wei J, Yuan P, He H (2011) Novel polymer/surfactant modified montmorillonite hybrids and the implications for the treatment of hydrophobic organic compounds in wastewaters. Appl Clay Sci 51:317–322Google Scholar
  250. 250.
    Shah KJ, Mishra MK, Shukla AD, Imae T, Shah DO (2013) Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. J Colloid Interface Sci 407:493–499Google Scholar
  251. 251.
    Tunc S, Duman O, Kanci B (2012) Rheological measurements of Na-bentonite and sepiolite particles in the presence of tetradecyltrimethylammonium bromide, sodium tetradecyl sulfonate and Brij 30 surfactants. Colloid Surf A 398:37–47Google Scholar
  252. 252.
    Gunawan NS, Indraswati N, YH J, Soetaredjo FE, Ayucitra A, Ismadji S (2010) Bentonites modified with anionic and cationic surfactants for bleaching of crude palm oil. Appl Clay Sci 47:462–464Google Scholar
  253. 253.
    Nathaniel E, Kurniawan A, Soetaredjo FE, Ismadji S (2011) Organo-bentonite for the adsorption of Pb(II) from aqueous solution: temperature dependent parameters of several adsorption equations. Desalin Water Treat 36:280–288Google Scholar
  254. 254.
    Sandy MV, Kurniawan A, Ayucitra A, Sunarso J, Ismadji S (2012) Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Front Chem Sci Eng 6:58–66Google Scholar
  255. 255.
    Kirby AJ, Camilleri P, Engberts JBN, Feiters MC, Nolte RJM, Soderman O, Bergsma M, Bell PC, Fielden ML, Garcia-Rodriguez CL, Guedat P, Kremer A, McGregor C, Perrin C, Ronsin G, Van Eijk MCP (2003) Gemini surfactants: new synthetic vectors for gene transfection. Angew Chem Int Ed 42:1448–1457Google Scholar
  256. 256.
    Liu Y, Gao M, Gu Z, Luo Z, Ye Y, Lu L (2014) Comparison between the removal of phenol and catechol by modified montmorillonite with two novel hydroxyl-containing Gemini surfactants. J Hazard Mater 267:71–80Google Scholar
  257. 257.
    Yang S, Gao M, Luo Z (2014) Adsorption of 2-Naphthol on the organo-montmorillonites modified by Gemini surfactants with different spacers. Chem Eng J 256:39–50Google Scholar
  258. 258.
    Suwandi AC, Indraswati N, Ismadji S (2012) Adsorption of N-methylated diaminotriphenilmethane dye (malachite green) on natural rarasaponin modified kaolin. Desalin Water Treat 41(1–3):342–355Google Scholar
  259. 259.
    Chandra IK, YH J, Ayucitra A, Ismadji S (2013) Evans blue removal from wastewater by rarasaponin–bentonite. Int J Environ Sci Technol 10(2):359–370Google Scholar
  260. 260.
    Kurniawan A, Sutiono H, YH J, Soetaredjo FE, Ayucitra A, Yudha A, Ismadji S (2011) Utilization of rarasaponin natural surfactant for organo-bentonite preparation: application for methylene blue removal from aqueous effluent. Microporous Mesoporous Mater 142(1):184–193Google Scholar
  261. 261.
    Cui H, Qian Y, Li Q, Wei Z, Zhai J (2013) Fast removal of hg (II) ions from aqueous solution by amine-modified attapulgite. Appl Clay Sci 72:84–90Google Scholar
  262. 262.
    Mu B, Kang YR, Wang AQ (2013) Preparation of a polyelectrolyte-coated magnetic attapulgite composite for the adsorption of precious metals. J Mater Chem A1:4804–4811Google Scholar
  263. 263.
    Chakraborty U, Singha T, Chianelli RR, Hansda C, Paul PK (2017) Organic-inorganic hybrid layer-by-layer electrostatic self-assembled film of cationic dye methylene blue and a clay mineral: spectroscopic and atomic force microscopic investigations. J Lumin 187:322–332Google Scholar
  264. 264.
    Mu B, Wang AQ (2015) One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/polyaniline nanocomposites served as adsorbent and catalyst support. J Mater Chem A3:281–289Google Scholar
  265. 265.
    Peng Y, Chen D, Ji J, Kong Y, Wan H, Yao C (2013) Chitosan-modified palygorskite: preparation, characterization and reactive dye removal. Appl Clay Sci 74:81–86Google Scholar
  266. 266.
    Gecol H, Ergican E, Miakatsindila P (2005) Biosorbent for tungsten species removal from water: effects of co-occurring inorganic species. J Colloid Interface Sci 292:344–353Google Scholar
  267. 267.
    Meenakshi A, Natalia KE, Kathryn AM, Yoshinari B, Jilska MP, Stevens GW (2010) Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions. Cold Reg Sci Technol 62:92–97Google Scholar
  268. 268.
    Futalan CM, Kan CC, Dalida ML (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohyd Polym 83:528–536Google Scholar
  269. 269.
    Zhai R, Zhang B, Wan Y, Li C, Wang J, Liu J (2013) Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309Google Scholar
  270. 270.
    Marrakchi F, Khanday WA, Asif M, Hameed BH (2016) Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int J Biol Macromol 93:1231–1239Google Scholar
  271. 271.
    He H, Tao Q, Zhu J, Yuan P, Shen W, Yang S (2013) Silylation of clay mineral surfaces. Appl Clay Sci 71:15–20Google Scholar
  272. 272.
    De Paiva LB, Morales AR, Díaz FRV (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1):8–24Google Scholar
  273. 273.
    Celis R, Hermosin MC, Cornejo J (2000) Heavy metal adsorption by functionalized clays. Environ Sci Technol 34(21):4593–4599Google Scholar
  274. 274.
    Mercier L, Detellier C (1995) Preparation, characterization, and applications as heavy metals sorbents of covalently grafted thiol functionalities on the interlamellar surface of montmorillonite. Environ Sci Technol 29(5):1318–1323Google Scholar
  275. 275.
    Xue A, Zhou S, Zhao Y, Lu X, Han P (2011) Effective NH 2-grafting on attapulgite surfaces for adsorption of reactive dyes. J Hazard Mater 194:7–14Google Scholar
  276. 276.
    Guimarães ADMF, Ciminelli VST, Vasconcelos WL (2009) Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions. Appl Clay Sci 42(3):410–414Google Scholar
  277. 277.
    Mercier L, Pinnavaia TJ (1998) A functionalized porous clay heterostructure for heavy metal ion (Hg2+) trapping. Microporous Mesoporous Mater 20(1–3):101–106Google Scholar
  278. 278.
    Liu P, Wang TM (2007) Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions. J Hazard Mater 149(1):75–79Google Scholar
  279. 279.
    MacEwan DM, Wilson MJ (1980) Interlayer and intercalation complexes of clay minerals. In: Crystal structures of clay minerals and their X-ray identification, vol 5. Mineralogical Society, London, pp 197–248Google Scholar
  280. 280.
    Wang L, Wang AQ (2008) Adsorption properties of Congo red from aqueous solution onto surfactant-modified montmorillonite. J Hazard Mater 160(1):173–180Google Scholar
  281. 281.
    Fan H, Zhou L, Jiang X, Huang Q, Lang W (2014) Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Appl Clay Sci 95:150–158Google Scholar
  282. 282.
    Anirudhan TS, Ramachandran M (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf Environ 95:215–225Google Scholar
  283. 283.
    Huang Y, Ma X, Liang G, Yan H (2008) Adsorption of phenol with modified rectorite from aqueous solution. Chem Eng J 141:1): 1–1): 8Google Scholar
  284. 284.
    Liu Y, Wang WB, Wang AQ (2010) Removal of congo red from aqueous solution by sorption on organified rectorite. Clean–Soil Air Water 38(7):670–677Google Scholar
  285. 285.
    Sánchez-Martín MJ, Dorado MC, Del Hoyo C, Rodríguez-Cruz MS (2008) Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. J Hazard Mater 150(1):115–123Google Scholar
  286. 286.
    Sanchez-Martin MJ, Rodriguez-Cruz MS, Andrades MS, Sanchez-Camazano M (2006) Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: influence of clay type and pesticide hydrophobicity. Appl Clay Sci 31(3):216–228Google Scholar
  287. 287.
    Alkaram UF, Mukhlis AA, Al-Dujaili AH (2009) The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J Hazard Mater 169(1):324–332Google Scholar
  288. 288.
    Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer− clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15(20):3774–3780Google Scholar
  289. 289.
    Lu Y, Chang PR, Zheng P, Ma X (2015) Porous 3D network rectorite/chitosan gels: preparation and adsorption properties. Appl Clay Sci 107:21–27Google Scholar
  290. 290.
    Dalida MLP, Mariano AFV, Futalan CM, Kan CC, Tsai WC, Wan MW (2011) Adsorptive removal of cu (II) from aqueous solutions using non-crosslinked and crosslinked chitosan-coated bentonite beads. Desalination 275(1):154–159Google Scholar
  291. 291.
    Vanamudan A, Pamidimukkala P (2015) Chitosan, nanoclay and chitosan–nanoclay composite as adsorbents for rhodamine-6G and the resulting optical properties. Int J Biol Macromol 74:127–135Google Scholar
  292. 292.
    Bleiman N, Mishael YG (2010) Selenium removal from drinking water by adsorption to chitosan–clay composites and oxides: batch and columns tests. J Hazard Mater 183(1):590–595Google Scholar
  293. 293.
    Pereira FAR, Sousa KS, Cavalcanti GRS, Fonseca MG, de Souza AG, Alves APM (2013) Chitosan-montmorillonite biocomposite as an adsorbent for copper (II) cations from aqueous solutions. Int J Biol Macromol 61:471–478Google Scholar
  294. 294.
    Zhang D, Zhou CH, Lin CX, Tong DS, Yu WH (2010) Synthesis of clay minerals. Appl Clay Sci 50(1):1–11Google Scholar
  295. 295.
    Zhang ZF, Wang WB, Wang AQ (2015) Effects of solvothermal process on the physicochemical and adsorption characteristics of palygorskite. Appl Clay Sci 107:230–237Google Scholar
  296. 296.
    Wang WB, Tian GY, Zhang ZF, Wang AQ (2015) A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of methylene blue and cu (II) ions. Chem Eng J 265:228–238Google Scholar
  297. 297.
    Tian GY, Wang WB, Kang YR, Wang AQ (2016) Palygorskite in sodium sulphide solution via hydrothermal process for enhanced methylene blue adsorption. J Taiwan Inst Chem E 58:417–423Google Scholar
  298. 298.
    Tian GY, Wang WB, Kang YR, Wang AQ (2016) Ammonium sulfide-assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet. J Environ Sci 41:33–43Google Scholar
  299. 299.
    Zhang ZF, Wang WB, Wang AQ (2015) High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of methylene blue. Appl Surf Sci 329:306–314Google Scholar
  300. 300.
    Wang WB, Tian GY, Zhang ZF, Wang AQ (2016) From naturally low-grade palygorskite to hybrid silicate adsorbent for efficient capture of cu (II) ions. Appl Clay Sci 132:438–448Google Scholar
  301. 301.
    Zhang ZF, Wang WB, Wang AQ (2015) Highly effective removal of methylene blue using functionalized attapulgite via hydrothermal process. J Environ Sci 33:106–115Google Scholar
  302. 302.
    Zhang ZF, Wang WB, Kang YR, Zong L, Wang AQ (2016) Tailoring the properties of palygorskite by various organic acids via a one-pot hydrothermal process: a comparative study for removal of toxic dyes. Appl Clay Sci 120:28–39Google Scholar
  303. 303.
    Zhang ZF, Wang WB, Kang YR, Zong L, Wang AQ (2015) Glycine-assisted evolution of palygorskite via a one-step hydrothermal process to give an efficient adsorbent for capturing Pb (II) ions. RSC Adv 5(117):96829–96839Google Scholar
  304. 304.
    Zhang Y, Wang WB, Zhang JP, Liu P, Wang AQ (2015) A comparative study about adsorption of natural palygorskite for methylene blue. Chem Eng J 262:390–398Google Scholar
  305. 305.
    Wang WB, Tian GY, Zong L, Wang Q, Zhou YM, Wang AQ (2016) Mesoporous hybrid Zn-silicate derived from red palygorskite clay as a high-efficient adsorbent for antibiotics. Microporous Mesoporous Mater 234:317–325Google Scholar
  306. 306.
    Wang WB, Tian GY, Wang DD, Zhang ZF, Kang YR, Zong L, Wang AQ (2016) All-into-one strategy to synthesize mesoporous hybrid silicate microspheres from naturally rich red palygorskite clay as high-efficient adsorbents. Sci Rep 6:39599Google Scholar
  307. 307.
    Wang WB, Tian GY, Zong L, Zhou YM, Kang YR, Wang Q, Wang AQ (2017) From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water. J Environ Sci 51:31–43Google Scholar
  308. 308.
    Tian GY, Wang WB, Zong L, Kang YR, Wang AQ (2016) A functionalized hybrid silicate adsorbent derived from naturally abundant low-grade palygorskite clay for highly efficient removal of hazardous antibiotics. Chem Eng J 293:376–385Google Scholar
  309. 309.
    Bakandritsos A, Steriotis T, Petridis D (2004) High surface area montmorillonite−carbon composites and derived carbons. Chem Mater 16(8):1551–1559Google Scholar
  310. 310.
    XP W, Zhu WY, Zhang XL, Chen TH, Frost RL (2011) Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol. Appl Clay Sci 52:400–406Google Scholar
  311. 311.
    Chen LF, Liang HW, Lu Y, Cui CH, SH Y (2011) Synthesis of an attapulgite clay@ carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir 27(14):8998–9004Google Scholar
  312. 312.
    Wu X, Gao P, Zhang X, Jin G, Xu Y, Wu Y (2014) Synthesis of clay/carbon adsorbent through hydrothermal carbonization of cellulose on palygorskite. Appl Clay Sci 95:60–66Google Scholar
  313. 313.
    Liu W, Yao C, Wang M, Ji J, Ying L, Fu C (2013) Kinetics and thermodynamics characteristics of cationic yellow X-GL adsorption on attapulgite/rice hull-based activated carbon nanocomposites. Environ Prog Sustain 32(3):655–662Google Scholar
  314. 314.
    Ai L, Li L (2013) Efficient removal of organic dyes from aqueous solution with ecofriendly biomass-derived carbon@ montmorillonite nanocomposites by one-step hydrothermal process. Chem Eng J 223:688–695Google Scholar
  315. 315.
    Zhang R, Chen C, Li J, Wang X (2015) Preparation of montmorillonite@ carbon composite and its application for U (VI) removal from aqueous solution. Appl Surf Sci 349:129–137Google Scholar
  316. 316.
    Wu LM, Tong DS, Li CS, Ji SF, Lin CX, Yang HM, Zhong ZK, CY X, Zhou CH (2016) Insight into formation of montmorillonite-hydrochar nanocomposite under hydrothermal conditions. Appl Clay Sci 119:116–125Google Scholar
  317. 317.
    Tian GY, Wang WB, Mu B, Kang YR, Wang AQ (2015) Facile fabrication of carbon/attapulgite composite for bleaching of palm oil. J Taiwan Inst Chem E 50:252–258Google Scholar
  318. 318.
    Mahramanlioglu M, Güçlü K (2004) Equilibrium, kinetic and mass transfer studies and column operations for the removal of arsenic (III) from aqueous solutions using acid treated spent bleaching earth. Environ Technol 25(9):1067–1076Google Scholar
  319. 319.
    Wambu EW, Muthakia GK, Shiundu PM (2009) Regeneration of spent bleaching earth and its adsorption of copper (II) ions from aqueous solutions. Appl Clay Sci 46(2):176–180Google Scholar
  320. 320.
    Tsai WT, Chen HP, Hsieh MF, Sun HF, Lai CW (2003) Regeneration of bleaching clay waste by chemical activation with chloride salts. J Environ Sci Heal A 38(4):685–696Google Scholar
  321. 321.
    Tsai WT, Lai CW (2006) Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth. J Hazard Mater 134(1):144–148Google Scholar
  322. 322.
    Tang J, Mu B, Zong L, Zheng M, Wang A (2015) Fabrication of attapulgite/carbon composites from spent bleaching earth for the efficient adsorption of methylene blue. RSC Adv 5(48):38443–38451Google Scholar
  323. 323.
    Tang J, Mu B, Wang WB, Zheng MS, Wang AQ (2016) Fabrication of manganese dioxide/carbon/attapulgite composites derived from spent bleaching earth for adsorption of Pb (II) and brilliant green. RSC Adv 6(43):36534–36543Google Scholar
  324. 324.
    Tang J, Mu B, Zong L, Zheng M, Wang A (2017) Facile and green fabrication of magnetically recyclable carboxyl-functionalized attapulgite/carbon nanocomposites derived from spent bleaching earth for wastewater treatment. Chem Eng J 322:102–114Google Scholar
  325. 325.
    Tsai WT, Chen HP, Hsien WY, Lai CW, Lee MS (2003) Thermochemical regeneration of bleaching earth waste with zinc chloride. Resour Conserv Recy 39(1):65–77Google Scholar
  326. 326.
    Mana M, Ouali MS, De Menorval LC, Zajac JJ, Charnay C (2011) Regeneration of spent bleaching earth by treatment with cethyltrimethylammonium bromide for application in elimination of acid dye. Chem Eng J 174(1):275–280Google Scholar
  327. 327.
    Chang JI, Tai HS, Huang TH (2006) Regeneration of spent bleaching earth by lye-extraction. Environ Prog Sustain 25(4):373–378Google Scholar
  328. 328.
    Pourvosoghi N, Nikbakht AM, Jafarmadar S (2013) An optimized process for biodiesel production from high FFA spent bleaching earth. Int J Eng Trans C Aspects 26(12):1545–1550Google Scholar
  329. 329.
    Sahafi SM, Goli SAH, Tabatabaei M, Nikbakht A, Pourvosoghi N (2016) The reuse of waste cooking oil and spent bleaching earth to produce biodiesel. Energ Source Part A 38(7):942–950Google Scholar
  330. 330.
    Abdulbari HA, Rosli MY, Abdurrahman HN, Nizam MK (2011) Lubricating grease from spent bleaching earth and waste cooking oil: tribology properties. Int J Phys Sci 6(20):4695–4699Google Scholar
  331. 331.
    Eliche-Quesada D, Corpas-Iglesias FA (2014) Utilisation of spent filtration earth or spent bleaching earth from the oil refinery industry in clay products. Ceram Int 40(10):16677–16687Google Scholar
  332. 332.
    Tian GY, Wang WB, Zong L, Kang YR, Wang AQ (2016) From spent dye-loaded palygorskite to a multifunctional palygorskite/carbon/ag nanocomposite. RSC Adv 6(48):41696–41706Google Scholar
  333. 333.
    Wang WB, Huang DJ, Kang YR, Wang AQ (2013b) One-step in-situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloid Surface B 106:51–59Google Scholar
  334. 334.
    Wang WB, Kang YR, Wang AQ (2013c) One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res 20:101. (10pp)Google Scholar
  335. 335.
    Zhu YF, Wang WB, Zheng YA, Wang F, Wang AQ (2016) Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template. Carbohyd Polym 140:51–58Google Scholar
  336. 336.
    Zhu YF, Wang WB, Zhang HF, Ye XS, Wu Z, Wang AQ (2017) Fast and high-capacity adsorption of Rb+ and Cs+ onto recyclable magnetic porous spheres. Chem Eng J 327:982–991Google Scholar
  337. 337.
    Wang X, Zheng Y, Wang A (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly (acrylic acid)/attapulgite composites. J Hazard Mater 168(2):970–977Google Scholar
  338. 338.
    Zheng Y, Zhu Y, Wang A (2014) Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chem Eng J 257:66–73Google Scholar
  339. 339.
    Natkański P, Kuśtrowski P, Białas A, Piwowarska Z, Michalik M (2013) Thermal stability of montmorillonite polyacrylamide and polyacrylate nanocomposites and adsorption of Fe (III) ions. Appl Clay Sci 75:153–157Google Scholar
  340. 340.
    Zhu L, Zhang L, Tang Y, Kou X (2014) Synthesis of sodium alginate graft poly (acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)/attapulgite hydrogel composite and the study of its adsorption. Polym-Plast Technol 53(1):74–79Google Scholar
  341. 341.
    Bulut Y, Akçay G, Elma D, Serhatlı IE (2009) Synthesis of clay-based superabsorbent composite and its sorption capability. J Hazard Mater 171(1):717–723Google Scholar
  342. 342.
    Zheng YA, Wang AQ (2010) Removal of heavy metals using polyvinyl alcohol semi-IPN poly (acrylic acid)/tourmaline composite optimized with response surface methodology. Chem Eng J 162(1):186–193Google Scholar
  343. 343.
    Güçlü G, Al E, Emik S, İyim TB, Özgümüş S, Özyürek M (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65(4):333–346Google Scholar
  344. 344.
    Wu L, Ye Y, Liu F, Tan C, Liu H, Wang S, Wu W (2013) Organo-bentonite-Fe3O4 poly (sodium acrylate) magnetic superabsorbent nanocomposite: synthesis, characterization, and thorium (IV) adsorption. Appl Clay Sci 83:405–414Google Scholar
  345. 345.
    Kaşgöz H, Durmuş A, Kaşgöz A (2008) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19(3):213–220Google Scholar
  346. 346.
    Chen Y, Zhao Y, Zhou S, Chu X, Yang L, Xing W (2009) Preparation and characterization of polyacrylamide/palygorskite. Appl Clay Sci 46(2):148–152Google Scholar
  347. 347.
    Chen H, Wang AQ (2009) Adsorption characteristics of cu (II) from aqueous solution onto poly (acrylamide)/attapulgite composite. J Hazard Mater 165(1):223–231Google Scholar
  348. 348.
    Zhang JP, Wang AQ (2010) Adsorption of Pb(II) from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite/sodium humate composite hydrogels. J Chem Eng Data 55:2379–2384Google Scholar
  349. 349.
    Irani M, Ismail H, Ahmad Z, Fan M (2015) Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb (ΙΙ) from aqueous solutions. J Environ Sci 27:9–20Google Scholar
  350. 350.
    Anirudhan TS, Rijith S (2012) Synthesis and characterization of carboxyl terminated poly (methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium (VI) from aqueous media. J Environ Radioactiv 106:8–19Google Scholar
  351. 351.
    Anirudhan TS, Suchithra PS, Senan P, Tharun AR (2012) Kinetic and equilibrium profiles of adsorptive recovery of thorium (IV) from aqueous solutions using poly (methacrylic acid) grafted cellulose/bentonite superabsorbent composite. Ind Eng Chem Res 51(13):4825–4836Google Scholar
  352. 352.
    Liu Y, Wang WB, Wang AQ (2010) Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination 259(1):258–264Google Scholar
  353. 353.
    Liu P, Jiang L, Zhu L, Wang AQ (2014) Novel approach for attapulgite/poly (acrylic acid)(ATP/PAA) nanocomposite microgels as selective adsorbent for Pb (II) ion. React Funct Polym 74:72–80Google Scholar
  354. 354.
    Liu P, Jiang L, Zhu L, Guo J, Wang AQ (2015) Synthesis of covalently crosslinked attapulgite/poly (acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. J Ind Eng Chem 23:188–193Google Scholar
  355. 355.
    Liu P, Jiang L, Zhu L, Wang AQ (2013) Attapulgite/poly (acrylic acid) nanocomposite (ATP/PAA) hydrogels with multifunctionalized attapulgite (org-ATP) nanorods as unique cross-linker: preparation optimization and selective adsorption of Pb (II) ion. ACS Sus Chem Eng 2(4):643–651Google Scholar
  356. 356.
    Zheng YA, Wang AQ (2010) Preparation and ammonium adsorption properties of biotite-based hydrogel composites. Ind Eng Chem Res 49(13):6034–6041Google Scholar
  357. 357.
    Zheng Y, Zhang J, Wang A (2009) Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly (acrylic acid)/attapulgite composite. Chem Eng J 155(1):215–222Google Scholar
  358. 358.
    Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171(1):671–677Google Scholar
  359. 359.
    Zheng Y, Xie Y, Wang A (2012) Rapid and wide pH-independent ammonium-nitrogen removal using a composite hydrogel with three-dimensional networks. Chem Eng J 179:90–98Google Scholar
  360. 360.
    Kaplan M, Kasgoz H (2011) Hydrogel nanocomposite sorbents for removal of basic dyes. Polym Bull 67(7):1153–1168Google Scholar
  361. 361.
    Li P, Kim NH, Heo SB, Lee JH (2008) Novel PAAm/Laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior. Compos Part B Eng 39(5):756–763Google Scholar
  362. 362.
    Dalaran M, Emik S, Güçlü G, İyim TB, Özgümüş S (2011) Study on a novel polyampholyte nanocomposite superabsorbent hydrogels: synthesis, characterization and investigation of removal of indigo carmine from aqueous solution. Desalination 279(1):170–182Google Scholar
  363. 363.
    Wang Y, Zeng L, Ren X, Song H, Wang A (2010) Removal of methyl violet from aqueous solutions using poly (acrylic acid-co-acrylamide)/attapulgite composite. J Environ Sci 22(1):7–14Google Scholar
  364. 364.
    Yi JZ, Zhang LM (2008) Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels. Bioresour Technol 99(7):2182–2186Google Scholar
  365. 365.
    Zhang LM, Zhou YJ, Wang Y (2006) Novel hydrogel composite for the removal of water-soluble cationic dye. J Chem Technol Biotechnol 81(5):799–804Google Scholar
  366. 366.
    Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22(4):486–493Google Scholar
  367. 367.
    Yang L, Ma X, Guo N (2012) Sodium alginate/Na+-rectorite composite microspheres: preparation, characterization, and dye adsorption. Carbohyd Polym 90(2):853–858Google Scholar
  368. 368.
    Liu Y, Zheng YA, Wang AQ (2011) Effect of biotite content of hydrogels on enhanced removal of methylene blue from aqueous solution. Ionics 17(6):535–543Google Scholar
  369. 369.
    Shi Y, Xue Z, Wang X, Wang L, Wang A (2013) Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly (acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym Bull 70(4):1163–1179Google Scholar
  370. 370.
    Wang AQ, Wang WB (2009) Superabsorbent materials. Kirk-Othmer Encycl Chem Technol.  https://doi.org/10.1002/0471238961.supewang.a01
  371. 371.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289Google Scholar
  372. 372.
    Bao Y, Ma J, Sun Y (2012) Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohyd Polym 88(2):589–595Google Scholar
  373. 373.
    Olad A, Gharekhani H, Mirmohseni A, Bybordi A (2017) Synthesis, characterization, and fertilizer release study of the salt and pH-sensitive NaAlg-g-poly (AA-co-AAm)/RHA superabsorbent nanocomposite. Polym Bull 74(8):3353–3377Google Scholar
  374. 374.
    Fanta GF, Burr RC, Russell CR, Rist CE (1966) Graft copolymers of starch. I. Copolymerization of gelatinized wheat starch with acrylonitrile. Fractionation of copolymer and effect of solvent on copolymer composition. J Appl Polym Sci 10(6):929–937Google Scholar
  375. 375.
    Bajpai AK, Giri A (2002) Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym 53(2):125–141Google Scholar
  376. 376.
    Li A, Wang A, Chen J (2004) Studies on poly (acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization. J Appl Polym Sci 92(3):1596–1603Google Scholar
  377. 377.
    Qi X, Liu M, Chen Z, Liang R (2007) Preparation and properties of diatomite composite superabsorbent. Polym Adv Technol 18(3):184–193Google Scholar
  378. 378.
    Lee WF, Yang LG (2004) Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly (sodium acrylate) and montmorillonite nanocomposite superabsorbents. J Appl Polym Sci 92(5):3422–3429Google Scholar
  379. 379.
    Urbano B, Rivas BL (2011) Poly (sodium 4-styrene sulfonate) and poly (2-acrylamidoglycolic acid) nanocomposite hydrogels: montmorillonite effect on water absorption, thermal, and rheological properties. Polym Bull 67(9):1823–1836Google Scholar
  380. 380.
    Wang WB, Zhang JP, Chen H, Wang AQ (2007) Study on superabsorbent composite. VIII. Effects of acid-and heat-activated attapulgite on water absorbency of polyacrylamide/attapulgite. J Appl Polym Sci 103(4):2419–2424Google Scholar
  381. 381.
    Lee WF, Chen YC (2005) Preparation of reactive mineral powders used for poly (sodium acrylate) composite superabsorbents. J Appl Polym Sci 97(3):855–861Google Scholar
  382. 382.
    Santiago F, Mucientes AE, Osorio M, Poblete FJ (2006) Synthesis and swelling behaviour of poly (sodium acrylate)/sepiolite superabsorbent composites and nanocomposites. Polym Int 55(8):843–848Google Scholar
  383. 383.
    Mu Y, Du D, Yang R, Xu Z (2015) Preparation and performance of poly (acrylic acid–methacrylic acid)/montmorillonite microporous superabsorbent nanocomposite. Mater Lett 142:94–96Google Scholar
  384. 384.
    Wang Y, Zhang X, Wei H, Zhang B, Xiang X, Chen R (2015) Synthesis of poly (AA-co-AM) superabsorbent composites by reinforcement of halloysite nanotubes. Polym Compos 36(2):229–236Google Scholar
  385. 385.
    Liu C, Yu L, Zhang Y, Zhang B, Liu J, Zhang H (2013) Preparation of poly (sodium acrylate-acrylamide) superabsorbent nanocomposites incorporating graphene oxide and halloysite nanotubes. RSC Adv 3(33):13756–13763Google Scholar
  386. 386.
    Wan T, Wang X, Yuan Y, He W (2006) Preparation of a kaolinite–poly (acrylic acid acrylamide) water superabsorbent by photopolymerization. J Appl Polym Sci 102(3):2875–2881Google Scholar
  387. 387.
    Patra SK, Swain SK (2011) Swelling study of superabsorbent PAA-co-PAM/clay nanohydrogel. J Appl Polym Sci 120(3):1533–1538Google Scholar
  388. 388.
    Zhang Y, Gu Q, Yin J, Wang Z, He P (2014) Effect of organic montmorillonite type on the swelling behavior of superabsorbent nanocomposites. Adv Polym Technol 33(2):21400Google Scholar
  389. 389.
    Kalaleh HA, Tally M, Atassi Y (2015) Preparation of bentonite-g-poly (acrylate-co-acrylamide) superabsorbent polymer composite for agricultural applications: optimization and characterization. Polym Sci Series B 57(6):750–758Google Scholar
  390. 390.
    Wan T, Zhou Z, Huang R, Zou C, Xu M, Cheng W, Li R (2014) Synthesis and swelling properties of microcrystal muscovite composite superabsorbent. Appl Clay Sci 101:199–204Google Scholar
  391. 391.
    Tang Q, Lin J, Wu J, Xu Y, Zhang C (2007) Preparation and water absorbency of a novel poly (acrylate-co-acrylamide)/vermiculite superabsorbent composite. J Appl Polym Sci 104(2):735–739Google Scholar
  392. 392.
    Swain SK, Shur B, Patra SK (2013) Poly (acrylamide-co-vinyl alcohol)—superabsorbent materials reinforced by modified clay. Polym Compos 34(11):1794–1800Google Scholar
  393. 393.
    Foungfung D, Phattanarudee S, Seetapan N, Kiatkamjornwong S (2011) Acrylamide–itaconic acid superabsorbent polymers and superabsorbent polymer/mica nanocomposites. Polym for Adv Technol 22(5):635–647Google Scholar
  394. 394.
    Qi X, Liu M, Chen Z (2015) Study on swelling behavior of poly (sodium acrylate-co-2-acryloylamino-2-methyl-1-propanesulfonic acid)/attapulgite macroporous superabsorbent composite. Polym Eng Sci 55(3):681–687Google Scholar
  395. 395.
    Irani M, Ismail H, Ahmad Z (2014) Hydrogel composites based on linear low-density polyethylene-g-poly (acrylic acid)/kaolin or halloysite nanotubes. J Appl Polym Sci 131(8):40101Google Scholar
  396. 396.
    Wang WB, Kang YR, Wang AQ (2010) Synthesis, characterization and swelling properties of guar gum-g-poly (sodium acrylate-co-styrene)/muscovite superabsorbent composites. Sci Technol Adv Mater 11(2):025006Google Scholar
  397. 397.
    Yang L, Ma X, Guo N (2011) Synthesis and properties of sodium alginate/Na+ rectorite grafted acrylic acid composite superabsorbent via 60Co γ irradiation. Carbohyd Polym 85(2):413–418Google Scholar
  398. 398.
    Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly (acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131(1):39747Google Scholar
  399. 399.
    Yan Z, Lin Z, Kai M, Guozhu M (2014) The surface modification of zeolite 4a and its effect on the water-absorption capability of starch-g-poly (acrylic acid) composite. Clay Clay Miner 62(3):211–223Google Scholar
  400. 400.
    Zhang Y, Zhao L, Chen Y (2015) Synthesis and characterization of starch-g-poly (acrylic acid)/Organo-zeolite 4A superabsorbent composites with respect to their water-holding capacities and nutrient-release behavior. Polym Compos 38:1838–1848Google Scholar
  401. 401.
    Wu J, Wei Y, Lin J, Lin S (2003) Preparation of a starch-graft-acrylamide/kaolinite superabsorbent composite and the influence of the hydrophilic group on its water absorbency. Polym Int 52(12):1909–1912Google Scholar
  402. 402.
    Li A, Liu R, Wang A (2005) Preparation of starch-graft-poly (acrylamide)/attapulgite superabsorbent composite. J Appl Polym Sci 98(3):1351–1357Google Scholar
  403. 403.
    Zhou M, Zhao J, Zhou L (2011) Utilization of starch and montmorrilonite for the preparation of superabsorbent nanocomposite. J Appl Polym Sci 121(4):2406–2412Google Scholar
  404. 404.
    Zhang JP, Li A, Wang AQ (2006) Study on superabsorbent composite. VI. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite. Carbohyd Polym 65(2):150–158Google Scholar
  405. 405.
    Likhitha M, Sailaja RRN, Priyambika VS, Ravibabu MV (2014) Microwave assisted synthesis of guar gum grafted sodium acrylate/cloisite superabsorbent nanocomposites: reaction parameters and swelling characteristics. Int J Biol Macromol 65:500–508Google Scholar
  406. 406.
    Shi XN, Wang WB, Wang AQ (2011) Synthesis and enhanced swelling properties of a guar gum-based superabsorbent composite by the simultaneous introduction of styrene and attapulgite. J Polym Res 18(6):1705–1713Google Scholar
  407. 407.
    Zhai NH, Wang WB, Wang AQ (2011) Synthesis and swelling characteristics of a pH-responsive guar gum-g-poly (sodium acrylate)/medicinal stone superabsorbent composite. Polym Compos 32(2):210–218Google Scholar
  408. 408.
    Yadav M, Rhee KY (2012) Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior. Carbohyd Polym 90(1):165–173Google Scholar
  409. 409.
    Yang HX, Wang WB, Wang AQ (2012) A pH-sensitive biopolymer-based superabsorbent nanocomposite from sodium alginate and attapulgite: synthesis, characterization, and swelling behaviors. J Disper Sci Technol 33(8):1154–1162MathSciNetGoogle Scholar
  410. 410.
    Wang YZ, Wang WB, Shi XN, Wang AQ (2013) Enhanced swelling and responsive properties of an alginate-based superabsorbent hydrogel by sodium p-styrenesulfonate and attapulgite nanorods. Polym Bull 70(4):1181–1193Google Scholar
  411. 411.
    Pourjavadi A, Ghasemzadeh H, Soleyman R (2007) Synthesis, characterization, and swelling behavior of alginate-g-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites. J Appl Polym Sci 105(5):2631–2639Google Scholar
  412. 412.
    Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21(15):1032–1034Google Scholar
  413. 413.
    Deng J, Yang L, Liang G, He S (2013) Preparation, characterization and swelling Behaviors sodium alginate-graft-acrylic acid/Na+ Rectorite superabsorbent composites. J Inorg Organomet 23(3):525–532Google Scholar
  414. 414.
    Shi XN, Wang WB, Kang YR, Wang AQ (2012) Enhanced swelling properties of a novel sodium alginate-based superabsorbent composites: NaAlg-g-poly (NaA-co-St)/APT. J Appl Polym Sci 125(3):1822–1832Google Scholar
  415. 415.
    Wang YZ, Wang WB, Shi XN, Wang AQ (2013) A superabsorbent nanocomposite based on sodium alginate and illite/smectite mixed-layer clay. J Appl Polym Sci 130(1):161–167Google Scholar
  416. 416.
    Ma G, Ran F, Yang Q, Feng E, Lei Z (2015) Eco-friendly superabsorbent composite based on sodium alginate and organo-loess with high swelling properties. RSC Adv 5(66):53819–53828Google Scholar
  417. 417.
    Ding X, Li L, Liu PS, Zhang J, Zhou NL, Lu S, Shen J (2009) The preparation and properties of dextrin-graft-acrylic acid/montmorillonite superabsorbent nanocomposite. Polym Compos 30(7):976–981Google Scholar
  418. 418.
    Marandi GB, Mahdavinia GR, Ghafary S (2011) Collagen-g-poly (sodium acrylate-co-acrylamide)/sodium montmorillonite superabsorbent nanocomposites: synthesis and swelling behavior. J Polym Res 18(6):1487–1499Google Scholar
  419. 419.
    Zhang JP, Wang Q, Wang AQ (2007) Synthesis and characterization of chitosan-g-poly (acrylic acid)/attapulgite superabsorbent composites. Carbohyd Polym 68(2):367–374Google Scholar
  420. 420.
    Xie H, Jia Z, Huang J, Zhang C (2011) Study on the preparation of superabsorbent composite of chitosan-g-poly (acrylic acid)/kaolin by in-situ polymerization. Int J Chem 3(3):69Google Scholar
  421. 421.
    Rodrigues FH, Pereira AG, Fajardo AR, Muniz EC (2013) Synthesis and characterization of chitosan-graft-poly (acrylic acid)/nontronite hydrogel composites based on a design of experiments. J Appl Polym Sci 128(5):3480–3489Google Scholar
  422. 422.
    Zhang J, Wang L, Wang A (2007) Preparation and properties of chitosan-g-poly (acrylic acid)/montmorillonite superabsorbent nanocomposite via in situ intercalative polymerization. Ind Eng Chem Res 46(8):2497–2502Google Scholar
  423. 423.
    Liu JH, Wang AQ (2008) Study on superabsorbent composites. XXI. Synthesis, characterization and swelling behaviors of chitosan-g-poly (acrylic acid)/organo-rectorite nanocomposite superabsorbents. J Appl Polym Sci 110(2):678–686Google Scholar
  424. 424.
    Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly (acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131:39747Google Scholar
  425. 425.
    Xie YT, Wang AQ (2009) Effects of modified vermiculite on water absorbency and swelling behavior of chitosan-g-poly (acrylic acid)/vermiculite superabsorbent composite. J Compos Mater 43(21):2401–2417Google Scholar
  426. 426.
    An JK, Wang WB, Wang AQ (2012) Preparation and swelling behavior of a pH-responsive psyllium-g-poly (acrylic acid)/attapulgite superabsorbent nanocomposite. Int J Polym Mater 61(12):906–918Google Scholar
  427. 427.
    Wang JL, Wang WB, Zheng YA, Wang AQ (2011) Effects of modified vermiculite on the synthesis and swelling behaviors of hydroxyethyl cellulose-g-poly (acrylic acid)/vermiculite superabsorbent nanocomposites. J Polym Res 18(3):401–408Google Scholar
  428. 428.
    Mukerabigwi JF, Lei S, Fan L, Wang H, Luo S, Ma X, Qin J, Huang XY, Cao Y (2016) Eco-friendly nano-hybrid superabsorbent composite from hydroxyethyl cellulose and diatomite. RSC Adv 6(38):31607–31618Google Scholar
  429. 429.
    Hu X, Deng Y (2015) Synthesis and swelling properties of silk sericin-g-poly (acrylic acid/attapulgite) composite superabsorbent. Polym Bull 72(3):487–501MathSciNetGoogle Scholar
  430. 430.
    Qiu H, Yu J (2008) Polyacrylate/(carboxymethylcellulose modified montmorillonite) superabsorbent nanocomposite: preparation and water absorbency. J Appl Polym Sci 107(1):118–123Google Scholar
  431. 431.
    Wang YP, Liang Y, Chen JC, Yan XD, Li CL, Wang XP (2009) Utilisation of potato leaves and organophilic montmorillonite for the preparation of superabsorbent composite under microwave irradiation. Polym Polym Compos 17(7):423Google Scholar
  432. 432.
    Islam MS, Rahaman MS, Yeum JH (2015) Electrospun novel super-absorbent based on polysaccharide–polyvinyl alcohol–montmorillonite clay nanocomposites. Carbohyd Polym 115:69–77Google Scholar
  433. 433.
    Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd Polym 84(1):76–82Google Scholar
  434. 434.
    Wang WB, Wang AQ (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohyd Polym 82(1):83–91Google Scholar
  435. 435.
    Wang WB, Xu JX, Wang AQ (2011) A pH-, salt-and solvent-responsive carboxymethylcellulose-g-poly (sodium acrylate)/medical stone superabsorbent composite with enhanced swelling and responsive properties. Express Polym Lett 5(5):385–400Google Scholar
  436. 436.
    Wang WB, Wang AQ (2011) Preparation, swelling, and stimuli-responsive characteristics of superabsorbent nanocomposites based on carboxymethyl cellulose and rectorite. Polym Adv Technol 22(12):1602–1611Google Scholar
  437. 437.
    Wang WB, Wang J, Kang YR, Wang AQ (2011) Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone. Compos Part B Eng 42(4):809–818Google Scholar
  438. 438.
    Li A, Zhang JP, Wang AQ (2007) Preparation and slow-release property of a poly (acrylic acid)/attapulgite/sodium humate superabsorbent composite. J Appl Polym Sci 103(1):37–45Google Scholar
  439. 439.
    Zheng YA, Wang AQ (2008) Study on superabsorbent composites. XVIII. Preparation, characterization, and property evaluation of poly (acrylic acid-co-acrylamide)/organomontmorillonite/sodium humate superabsorbent composites. J Appl Polym Sci 108(1):211–219Google Scholar
  440. 440.
    Yi JZ, Liang ZQ, Zhang LM (2007) Studies on sodium humate/polyacrylamide/clay hybrid hydrogels. Acta Polymerica (Chinese) 6:548–553Google Scholar
  441. 441.
    Zhang JP, Li A, Wang AQ (2005) Study on superabsorbent composite. V. Synthesis,swelling behaviors and application of poly(acrylic acid-co-acrylamide)/sodium humate/attapulgite superabsorbent composite. Polym Adv Technol 16:813–820Google Scholar
  442. 442.
    Zhang JP, Chen H, Wang AQ (2006) Study on superabsorbent composite—VII. Effects of organification of attapulgite on swelling behaviors of poly (acrylic acid-co-acrylamide)/sodium humate/organo-attapulgite composite. Polym Adv Technol 17(5):379–385Google Scholar
  443. 443.
    Zheng YA, Gao TP, Wang AQ (2008) Preparation, swelling, and slow-release characteristics of superabsorbent composite containing sodium humate. Ind Eng Chem Res 47:1766–1773Google Scholar
  444. 444.
    Zheng YA, Wang AQ (2009) Study on superabsorbent composite. XX. Effects of cation-exchanged montmorillonite on swelling properties of superabsorbent composite containing sodium humate. Polym Compos 30(8):1138–1145Google Scholar
  445. 445.
    Yi JZ, Zhang LM (2007) Studies of sodium humate/polyacrylamide/clay hybrid hydrogels. I. Swelling and rheological properties of hydrogels. Eur Polym J 43(8):3215–3221Google Scholar
  446. 446.
    Rashidzadeh A, Olad A (2014) Slow-released NPK fertilizer encapsulated by NaAlg-g-poly (AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohyd Polym 114:269–278Google Scholar
  447. 447.
    Wang Y, Liu M, Ni B, Xie L (2012) κ-carrageenan–sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Ind Eng Chem Res 51(3):1413–1422Google Scholar
  448. 448.
    Xie L, Liu M, Ni B, Zhang X, Wang Y (2011) Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem Eng J 167(1):342–348Google Scholar
  449. 449.
    Zhang JP, Liu RF, Li A, Wang AQ (2006) Preparation, swelling behaviors, and slow-release properties of a poly (acrylic acid-co-acrylamide)/sodium humate superabsorbent composite. Ind Eng Chem Res 45(1):48–53Google Scholar
  450. 450.
    Ni B, Liu M, Lü S, Xie L, Wang Y (2010) Multifunctional slow-release organic− inorganic compound fertilizer. J Agri Food Chem 58(23):12373–12378Google Scholar
  451. 451.
    Bhardwaj AK, Shainberg I, Goldstein D, Warrington DN, Levy GJ (2007) Water retention and hydraulic conductivity of cross-linked polyacrylamides in Sandy soils. Soil Sci Soc Am J 71:406–412Google Scholar
  452. 452.
    He X, Yang HM (2014) A novel strategy to the synthesis of Na3YSi2O7 from natural palygorskite. Appl Clay Sci 101:339–344Google Scholar
  453. 453.
    Lin Q, Hao J, Li J, Ma Z, Lin W (2007) Copper-impregnated Al–Ce-pillared clay for selective catalytic reduction of NO by C3H6. Catal Today 126(3):351–358; Wang Y, Qu J, Liu H, Hu C (2007) Adsorption and reduction of nitrate in water on hydrotalcite-supported Pd-cu catalyst. Catal Today 26(3):476–482Google Scholar
  454. 454.
    Wang WB, Wang FF, Kang YR, Wang AQ (2013) Facile self-assembly of au nanoparticles on a magnetic attapulgite/Fe3O4 composite for fast catalytic decoloration of dye. RSC Adv 3(29):11515–11520Google Scholar
  455. 455.
    Wang WB, Kang YR, Wang AQ (2014) In situ fabrication of ag nanoparticles/attapulgite nanocomposites: green synthesis and catalytic application. J Nanopart Res 16(2):2281MathSciNetGoogle Scholar
  456. 456.
    Mu B, Wang AQ (2015) One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/polyaniline nanocomposites served as an adsorbent and catalyst support. J Mater Chem A 3(1):281–289Google Scholar
  457. 457.
    Sanz E, Arteaga A, García MA, Cámara C, Dietz C (2012) Chromatographic analysis of indigo from Maya blue by LC–DAD–QTOF. J Archaeol Sci 39:3516–3523Google Scholar
  458. 458.
    Doménech A, Doménech-Carbó MT, del Río MS, de Agredos Pascual MLV (2009) Comparative study of different indigo-clay Maya blue-like systems using the voltammetry of microparticles approach. J Solid State Electrochem 13:869–878Google Scholar
  459. 459.
    Giustetto R, Wahyudi O (2011) Sorption of red dyes on palygorskite: synthesis and stability of red/purple Mayan nanocomposites. Microporous Mesoporous Mater 142:221–235Google Scholar
  460. 460.
    Leitão IM, Seixas de Melo JS (2013) Maya blue, an ancient guest–host pigment: synthesis and models. J Chem Edu 90:1493–1497Google Scholar
  461. 461.
    Zhang Y, Wang WB, Mu B, Wang Q, Wang AQ (2015) Effect of grinding time on fabricating a stable methylene blue/palygorskite hybrid nanocomposites. Powder Technol 280:173–179Google Scholar
  462. 462.
    Reinen D, Köhl P, Muller C (2004) Colour centres in ‘Maya blue’—the incorporation of organic pigment molecules into the palygorskite lattice. Z Anorg Allg Chem 630:97–103Google Scholar
  463. 463.
    Mu B, Wang Q, Wang AQ (2015) Effect of different clay minerals and calcination temperature on the morphology and color of clay/CoAl2O4 hybrid pigments. RSC Adv 5(124):102674–102681Google Scholar
  464. 464.
    Zhang AJ, Mu B, Luo ZH, Wang AQ (2017) Bright blue halloysite/CoAl2O4 hybrid pigments: preparation, characterization and application in water-based painting. Dyes Pigments 139:473–481Google Scholar
  465. 465.
    Chen GG, Qi XM, Guan Y, Peng F, Yao CL, Sun RC (2016) High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sus Chem Eng 4(4):1985–1993Google Scholar
  466. 466.
    Azahari NA, Othman N, Ismail H (2012) Effect of attapulgite clay on biodegradability and tensile properties of polyvinyl alcohol/corn starch blend film. Int J Polym Mater 61(14):1065–1078Google Scholar
  467. 467.
    Huang D, Mu B, Wang A (2012) Preparation and properties of chitosan/poly (vinyl alcohol) nanocomposite films reinforced with rod-like sepiolite. Mater Lett 86:69–72Google Scholar
  468. 468.
    Samper-Madrigal MD, Fenollar O, Dominici F, Balart R, Kenny JM (2015) The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. J Mater Sci 50(2):863–872Google Scholar
  469. 469.
    Moazeni N, Mohamad Z, Dehbari N (2015) Study of silane treatment on poly-lactic acid (PLA)/sepiolite nanocomposite thin films. J Appl Polym Sci 132(6):41428Google Scholar
  470. 470.
    Makaremi M, Pasbakhsh P, Cavallaro G, Lazzara G, Aw YK, Lee SM, Milioto S (2017) Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications. ACS Appl Mater Interf 9(20):17476–17488Google Scholar
  471. 471.
    Strawhecker KE, Manias E (2000) Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem Mater 12(10):2943–2949Google Scholar
  472. 472.
    Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474Google Scholar
  473. 473.
    Li X, Liu A, Ye R, Wang Y, Wang W (2015) Fabrication of gelatin–laponite composite films: effect of the concentration of laponite on physical properties and the freshness of meat during storage. Food Hydrocolloid 44:390–398Google Scholar
  474. 474.
    López OV, Castillo LA, García MA, Villar MA, Barbosa SE (2015) Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloid 43:18–24Google Scholar
  475. 475.
    Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474Google Scholar
  476. 476.
    Carosio F, Colonna S, Fina A, Rydzek G, Hemmerlé J, Jierry L, Schaaf P, Boulmedais F (2014) Efficient gas and water vapor barrier properties of thin poly (lactic acid) packaging films: functionalization with moisture resistant nafion and clay multilayers. Chem Mater 26(19):5459–5466Google Scholar
  477. 477.
    Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interf 4(3):1643–1649Google Scholar
  478. 478.
    Zhang ZZ, Wang BT (2013) Preparation and water retention properties of clay-based sand-fi xing and grass-planting materials. J Wuhan Univ Technol 28(2):325–328Google Scholar
  479. 479.
    Qu YP, Zhang ZZ, Li CL (2017) Preparation and water retention properties of montmorillonite modified by EL-10 emulsifying agent. J Wuhan Univ Technol 32(4):S06–S11Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-materials and Green ChemistryLanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhouChina
  2. 2.R&D Center of Xuyi Palygorskite Applied TechnologyLanzhou Institute of Chemical Physics, Chinese Academy of SciencesXuyiChina

Personalised recommendations