Advertisement

Plasmonic Ecomaterials

  • Carlos Puente
  • Israel LópezEmail author
Reference work entry

Abstract

The accelerated industrial growth and the human consumerism during the past decades, as well as the agricultural and livestock activities, have led to a general deterioration of the world ecosystems. An alternative solution is the usage of ecomaterials, or “environmentally conscious materials,” which can be classified in the following four categories: “hazardous substance free material,” “materials with green environmental profile,” “recyclable materials,” and “materials with high material-efficiency.” The design, synthesis, development and application of this kind of materials, are important steps to remediate the world ecosystems.

On the other hand, the metallic nanoparticles are materials with a wide variety of properties and applications, which are different from the ones shown by their bulk counterpart. The usage of these plasmonic nanoparticles, that is to say, those nanoparticles which show a local surface plasmon resonance (LSPR), has been extended in a way that they can be used as ecomaterials from different approaches: as a material with a green environmental profile by using industrial wastes, such as non-used plants parts, for their synthesis; as a recyclable material due to their recovery, transformation and reuse capabilities; as a hazardous substance free material due to the existing green synthesis methods which use microorganisms and plant extracts; as a material with high materialefficiency, because they can replace or enhance a currently used material, for example, their use to catalyze chemical reactions.

The above said is possible thanks to the nanophotonic properties of the plasmonic nanoparticles, which are caused by the LSPR modes, these modes are characteristic of the shape, size and composition of a metallic nanoparticle, and they can also be tuned to produce a specific response, this can be done by a chemical functionalization, a solvent change, interaction with other particles, etc., leading to a wide application catalog in which the plasmonic nanoparticles can be used as ecomaterial.

References

  1. 1.
    Halada K, Yamamoto R (2001) The current status of research and development on ecomaterials around the world. MRS Bull 26:871–879CrossRefGoogle Scholar
  2. 2.
    Halada K (2003) Progress of ecomaterials toward a sustainable society. Curr Opin Solid State Mater Sci 7:209–216CrossRefGoogle Scholar
  3. 3.
    Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics – a route to nanoscale optical devices. Adv Mater 13:1501–1505CrossRefGoogle Scholar
  4. 4.
    Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356CrossRefGoogle Scholar
  5. 5.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 3:377–445zbMATHCrossRefGoogle Scholar
  6. 6.
    Walters G, Parkin IP (2009) The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. J Mater Chem 5:574–590CrossRefGoogle Scholar
  7. 7.
    Zhang Q, Ge J, Pham T, Goebl J, Hu Y, Lu Z, Yin Y (2009) Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. Angew Chem Int Ed 48:3516–3519CrossRefGoogle Scholar
  8. 8.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758CrossRefGoogle Scholar
  9. 9.
    Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta Mol Biomol Spectrosc 90:173–176CrossRefGoogle Scholar
  10. 10.
    Castro L, Blázquez ML, González F, Muñoz JA, Ballester A (2010) Extracellular biosynthesis of gold nanoparticles using sugar beet pulp. Chem Eng J 164:92–97CrossRefGoogle Scholar
  11. 11.
    Yang N, Li WH, Hao L (2014) Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett 134:67–70CrossRefGoogle Scholar
  12. 12.
    Ibrahim HM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275CrossRefGoogle Scholar
  13. 13.
    Ahmad N, Sharma S, Rai R (2012) Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Adv Mater Lett 3:376–380CrossRefGoogle Scholar
  14. 14.
    Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216CrossRefGoogle Scholar
  15. 15.
    Song JY, Kwon E-Y, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164CrossRefGoogle Scholar
  16. 16.
    Raveendran P, Fu J, Wallen SL (2002) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941CrossRefGoogle Scholar
  17. 17.
    Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82:933–941CrossRefGoogle Scholar
  18. 18.
    Shahwan T, Sirriah SA, Nairat M, Boyaci E, Eroglu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266CrossRefGoogle Scholar
  19. 19.
    Awwad AM, Salem NM, Abdeen AO (2013) Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind Chem 4:1–6CrossRefGoogle Scholar
  20. 20.
    Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerfaces 108:255–259CrossRefGoogle Scholar
  21. 21.
    Nasrollahzadeh M, Sajadi SM, Khalaj M (2014) Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol. RSC Adv 4:47313–47318CrossRefGoogle Scholar
  22. 22.
    Bao ZY, Liu X, Dai J, Wu Y, Tsang YH, Lei DY (2014) In situ SERS monitoring of photocatalytic organic decomposition using recyclable TiO2-coated Ag nanowire arrays. Appl Surf Sci 301:351–357CrossRefGoogle Scholar
  23. 23.
    Li D, Li D-W, Li Y, Fossey JS, Long Y-T (2010) Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering. J Mater Chem 20:3688–3693CrossRefGoogle Scholar
  24. 24.
    Li X, Hu H, Li D, Shen Z, Xiong Q, Li S, Fan HJ (2012) Ordered array of gold semishells on TiO2 spheres: an ultrasensitive recyclable SERS substrate. ACS Appl Mater Interfaces 4:2180–2185CrossRefGoogle Scholar
  25. 25.
    Aldeanueva-Potel P, Faoucher E, Alvarez-Puebla RA, Liz-Marzán LM, Brust M (2009) Recyclable molecular trapping and SERS detection in silver-loaded agarose gels with dynamic hot spots. Anal Chem 81:9233–9238CrossRefGoogle Scholar
  26. 26.
    Gopalakrishnan A, Chirumamilla M, De Angelis F, Toma A, Proietti Z, Krahne R (2014) Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules. ACS Nano 8:7986–7994CrossRefGoogle Scholar
  27. 27.
    Sinha G, Depero LE, Alessandri I (2011) Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl Mater Interfaces 3:2557–2563CrossRefGoogle Scholar
  28. 28.
    Lin Y, Bunker CE, Fernando KAS, Connell JW (2012) Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices. ACS Appl Mater Interfaces 4:1110–1117CrossRefGoogle Scholar
  29. 29.
    Zheng G, Polavarapu L, Liz-Marzán L M, Pastoriza-Santos I, Pérez-Juste J (2015) Gold nanoparticle-loaded filter paper: a recyclable dep-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chem Commun 51:4572–4575CrossRefGoogle Scholar
  30. 30.
    Zhou J, Duan B, Fang Z, Song J, Wang C, Messersmith PB, Duan H (2013) Interfacial assembly of mussel-inspired Au@Ag@Polydopamine core-shell nanoparticles for recyclable nanocatalysts. Adv Mater 26:701–705CrossRefGoogle Scholar
  31. 31.
    Lin F-h, R-a D (2011) Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115:6591–6598CrossRefGoogle Scholar
  32. 32.
    Zheng G, Kaefer K, Mourdikoudis S, Polavarapu L, Vaz B, Cartmell SE, Bouleghlimat A, Buurma NJ, Yate L, de Lera AR, Liz-Marzán LM, Pastoriza-Santos I, Pérez-Juste J (2015) Palladium nanoparticle-loaded cellulose paper: a highly efficient, robust, and recyclable self-assembled composite catalytic system. J Phys Chem Lett 6:230–238CrossRefGoogle Scholar
  33. 33.
    Bhatte KD, Tambade PJ, Dhake KP, Bhanage BM (2010) Silver nanoparticles as an efficient, heterogeneous and recyclable catalyst for synthesis of β-enaminones. Catal Commun 11:1233–1237CrossRefGoogle Scholar
  34. 34.
    Yang T-H, Huang L-D, Harn Y-W, Lin C-C, Chang J-K, Wu C-I, Wu J-M (2013) High density unaggregated Au nanoparticles on ZnO nanorod arrays function as efficient and recyclable photocatalysts for environmental purification. Small 9:3169–3182CrossRefGoogle Scholar
  35. 35.
    Zou F, Ding Q, Tran VT, Wang G, Zhang Y, Kang S, Lee J, Zhou H (2015) Magnetically recyclable catalytic activity of spiky magneto-plasmonic nanoparticles. RSC Adv 5:56653–56657CrossRefGoogle Scholar
  36. 36.
    Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta Mol Biomol Spectrosc 73:374–381CrossRefGoogle Scholar
  37. 37.
    Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234CrossRefGoogle Scholar
  38. 38.
    He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987CrossRefGoogle Scholar
  39. 39.
    Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489CrossRefGoogle Scholar
  40. 40.
    Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815CrossRefGoogle Scholar
  41. 41.
    Govender Y, Riddin TL, Gericke M, Whiteley CG (2010) On the enzymatic formation of platinum nanoparticles. J Nanopart Res 12:261–271CrossRefGoogle Scholar
  42. 42.
    Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653CrossRefGoogle Scholar
  43. 43.
    Nasrollahzadeh M, Sajadi M, Rostami-Vartooni A, Bagherzadeh M, Safari R (2015) Immobilization of copper nanoparticles on perlite: green synthesis, characterization and catalytic activity on aqueous reduction of 4-nitrophenol. J Mol Catal A Chem 400:22–30CrossRefGoogle Scholar
  44. 44.
    Zhu H, Du ML, Zhou ML, Xu CS, Li N, Fu YQ (2012) Facile and green synthesis of well-dispersed Au nanoparticles in PAN nanofibers by tea polyphenols. J Mater Chem 22:9301–9307CrossRefGoogle Scholar
  45. 45.
    Raveendran P, Fu J, Wallen SL (2006) A simple and “green” method for the synthesis of Au, Ag, and Au-Ag alloy. Green Chem 8:34–38CrossRefGoogle Scholar
  46. 46.
    Zhu H, Du ML, Zou ML, Xu CS, Fu YQ (2012) Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates. Dalton Trans 41:10465–10471CrossRefGoogle Scholar
  47. 47.
    Sathishkumar M, Sneha K, Kwak IS, Mao J, Tripathy SJ, Yun YS (2009) Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater 171:400–404CrossRefGoogle Scholar
  48. 48.
    Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96CrossRefGoogle Scholar
  49. 49.
    Wen M, Takakura S, Fuku K, Mori K, Yamashita H (2015) Enhancement of Pd-catalyzed Suzuki-Miyaura coupling reaction assisted by localized surface plasmon resonance of Au nanorods. Catal Today 242:381–385CrossRefGoogle Scholar
  50. 50.
    Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int J Biol Macromol 51:583–589CrossRefGoogle Scholar
  51. 51.
    Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ 466:210–213CrossRefGoogle Scholar
  52. 52.
    Gopinath K, Venkatesh KS, Ilangovan R, Sankaranarayanan K, Arumugam A (2013) Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind Crop Prod 50:737–742CrossRefGoogle Scholar
  53. 53.
    Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31:865–873CrossRefGoogle Scholar
  54. 54.
    Lee H-J, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia Kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88:1971–1977Google Scholar
  55. 55.
    Schabes-Retchkiman PS, Canizal G, Herrera-Becerra R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29:95–99CrossRefGoogle Scholar
  56. 56.
    Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:1–10Google Scholar
  57. 57.
    Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:1–3Google Scholar
  58. 58.
    Yang J, You J, Chen C-C, Hsu W-C, Tan H-r, Zhang WW, Hong Z, Yang Y (2011) Plasmonic polymer tandem solar cell. ACS Nano 5:6210–6217CrossRefGoogle Scholar
  59. 59.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:1–8CrossRefGoogle Scholar
  60. 60.
    Chen X, Jia B, Zhang Y, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci Appl 2:1–6Google Scholar
  61. 61.
    Saliba M, Zhang W, Burlakov VM, Stranks SD, Sun Y, Ball JM, Johnston MB, Goriely A, Wiesner U, Snaith HJ (2015) Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv Funct Mater 25:5038–5046CrossRefGoogle Scholar
  62. 62.
    Lu L, Luo Z, Xu T, Yu L (2013) Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett 13:59–64CrossRefGoogle Scholar
  63. 63.
    Xu Q, Liu F, Liu Y, Meng W, Cui K, Feng X, Zhang W, Huang Y (2014) Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells. Opt Express 22:301–310CrossRefGoogle Scholar
  64. 64.
    Yeh D-M, Huang C-F, Chen C-Y, Lu Y-C, Yang CC (2008) Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology 19:1–4CrossRefGoogle Scholar
  65. 65.
    Sung J-H, Kim B-S, Choi C-H, Lee M-W, Lee S-G, Park S-G, Lee E-H, Beom-Hoan O (2009) Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance. Microelectron Eng 86:1120–1123CrossRefGoogle Scholar
  66. 66.
    Kao CC, Su YK, Lin CL, Chen JJ (2010) Localized surface plasmon-enhanced nitride-based light-emitting diode with Ag nanotriangle array by nanosphere lithography. IEEE Photon Technol Lett 22:984–986CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias QuímicasLaboratorio de Materiales I, Av. Universidad, Cd. UniversitariaSan Nicolás de los GarzaMexico

Personalised recommendations