Artificial Photosynthesis: An Approach for a Sustainable Future

  • Matthieu Koepf
  • Anne-Lucie Teillout
  • Manuel J. Llansola-PortolesEmail author
Reference work entry


The energy needs of humankind has experimented a sharp increase since the beginning of the Anthropocene due to a large increase in population and the evolution of our society’s lifestyle. Recent projections suggest that it will likely lead to a major crisis due to environmental issues associated with the increasing use of fossil fuel as major energy source, as well as due to a rapid dwindling of the classical and easily accessible fossil-fuels stocks. These issues require a quick response if the lifestyle adopted by our societies shall be sustained. Several solutions have been envisioned to tackle these problems, of which, the development of Artificial Photosynthetic systems is one of the most appealing. The field of artificial photosynthesis takes Nature itself as a source of inspiration, to propose alternative energy harvesting and storage strategies. This field of research not only aims at mimicking the main processes that permitted photosynthetic organisms to thrive and become the most successful autotrophs on earth, but as well at improving and optimizing these processes using synthetic materials. In this chapter, the underlying mechanisms that enable photosynthetic organisms to convert (and store) solar energy into a directly usable chemical energy will be discussed. Then it will be explained how these concepts can be extended to artificial systems and ultimately used to our own benefit.


  1. 1.
    IPCC (2017) Fifth assessment report – intergovernmental panel on climate change. Available from
  2. 2.
    Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898Google Scholar
  3. 3.
    Keeling R2017 Scripps CO2 program. Available from
  4. 4.
    Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen. The solar generation of hydrogen by water photoelectrolysis. Springer, New YorkGoogle Scholar
  5. 5.
    Sherman BD et al (2014) Evolution of reaction center mimics to systems capable of generating solar fuel. Photosynth Res 120(1):59–70Google Scholar
  6. 6.
    Green MA et al (2010) Solar cell efficiency tables (version 35). Prog Photovolt Res Appl 18(2):144–150Google Scholar
  7. 7.
    Durusu A, Nakir I, Tanrioven M (2017) Photovoltaic system: case studies. In: Bizon N et al (eds) Energy harvesting and energy efficiency: technology, methods, and applications. Springer International Publishing, Cham, pp 235–260Google Scholar
  8. 8.
    Blankenship RE (2014) Molecular mechanisms of photosynthesis. Blackwell Science, OxfordGoogle Scholar
  9. 9.
    Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10(7):492–501Google Scholar
  10. 10.
    Scholes GD et al (2011) Lessons from nature about solar light harvesting. Nat Chem 3(10):763–774Google Scholar
  11. 11.
    Romero E, Novoderezhkin VI, van Grondelle R (2017) Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543(7645):355–365Google Scholar
  12. 12.
    Symes MD, Cogdell RJ, Cronin L (2013) Designing artificial photosynthetic devices using hybrid organic–inorganic modules based on polyoxometalates. Philos Trans R Soc A Math Phys Eng Sci 371(1996). Scholar
  13. 13.
    Novoderezhkin VI et al (2011) Multiple charge-separation pathways in photosystem II: modeling of transient absorption kinetics. ChemPhysChem 12(3):681–688Google Scholar
  14. 14.
    van Brederode ME et al (1999) Multiple pathways for ultrafast transduction of light energy in the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci 96(5):2054–2059Google Scholar
  15. 15.
    Romero E et al (2014) Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys 10(9):676–682Google Scholar
  16. 16.
    Dirks G et al (1980) Light absortion and energy transfer in polyene-porphyrin esters. Photochem Photobiol 32(2):277–280Google Scholar
  17. 17.
    Moore AL et al (1982) Photoprotection by carotenoids during photosynthesis: motional dependence of intramolecular energy transfer. Science 216(4549):982–984Google Scholar
  18. 18.
    Gust D et al (1992) Triplet and singlet energy transfer in carotene-porphyrin dyads: role of the linkage bonds. J Am Chem Soc 114(10):3590–3603Google Scholar
  19. 19.
    Guilard R, Kadish K, Smith K (2012) The porphyrin handbook, 1st edn. Academic, LondonGoogle Scholar
  20. 20.
    Kuciauskas D et al (1999) An artificial photosynthetic antenna-reaction center complex. J Am Chem Soc 121(37):8604–8614Google Scholar
  21. 21.
    Terazono Y et al (2012) Light harvesting, excitation energy/electron transfer, and photoregulation in artificial photosynthetic systems. In: Kim D (ed) Multiporphyrin arrays: fundamentals and applications. Pan Stanford Publishing, SingaporeGoogle Scholar
  22. 22.
    Ghiggino KP et al (2000) The dynamics of electronic energy transfer in novel multiporphyrin functionalized dendrimers: a time-resolved fluorescence anisotropy study. J Phys Chem B 104(12):2596–2606Google Scholar
  23. 23.
    Schwartz E et al (2010) Macromolecular multi-chromophoric scaffolding. Chem Soc Rev 39(5):1576–1599Google Scholar
  24. 24.
    Yang J et al (2012) Excitation energy transfer in multiporphyrin arrays with cyclic architectures: towards artificial light-harvesting antenna complexes. Chem Soc Rev 41(14):4808–4826Google Scholar
  25. 25.
    Ogawa K, Kobuke Y (2006) Construction and photophysical properties of self-assembled linear porphyrin arrays. J Photochem Photobiol C: Photochem Rev 7(1):1–16Google Scholar
  26. 26.
    Xu Z et al (2015) Energy transfer from colloidal quantum dots to near-infrared-absorbing tetraazaporphyrins for enhanced light harvesting. J Phys Chem C 119(18):9754–9761Google Scholar
  27. 27.
    Adhyaksa GWP et al (2013) Broadband energy transfer to sensitizing dyes by mobile quantum dot mediators in solar cells. Sci Rep 3.
  28. 28.
    Nabiev I et al (2010) Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. Angew Chem Int Ed 49(40):7217–7221Google Scholar
  29. 29.
    Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129(11):3104–3109Google Scholar
  30. 30.
    Harris MA et al (2014) Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture. Photosynth Res 121(1):35–48Google Scholar
  31. 31.
    Veneziano R et al (2016) Designer nanoscale DNA assemblies programmed from the top down. Science.
  32. 32.
    Hemmig EA et al (2016) Programming light-harvesting efficiency using DNA origami. Nano Lett 16(4):2369–2374Google Scholar
  33. 33.
    Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196Google Scholar
  34. 34.
    Kong JLY, Loach PA (1978) In: Dutton L, Leigh JS, Scarpa A (eds) Frontieres of biological energetics. Academic, New YorkGoogle Scholar
  35. 35.
    Bensasson RV et al (1981) Mimicry of antenna and photo-protective carotenoid functions by a synthetic carotenoporphyrin. Nature 290(5804):329–332Google Scholar
  36. 36.
    Land EJ et al (1987) Pulse radiolytic and electrochemical investigations of intramolecular electron transfer in carotenoporphyrins and carotenoporphyrin-quinone triads. J Phys Chem 91(18):4831–4835Google Scholar
  37. 37.
    Moore TA et al (1984) Photodriven charge separation in a carotenoporphyrin-quinone triad. Nature 307(5952):630–632Google Scholar
  38. 38.
    Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92(3):435–461Google Scholar
  39. 39.
    Terazono Y et al (2009) Multiantenna artificial photosynthetic reaction center complex. J Phys Chem B 113(20):7147–7155Google Scholar
  40. 40.
    Verhoeven JW et al (2005) Long-lived charge-transfer states in compact donor–acceptor dyads. ChemPhysChem 6(11):2251–2260Google Scholar
  41. 41.
    Guldi DM (2002) Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 31(1):22–36Google Scholar
  42. 42.
    Kodis G et al (2006) Energy and photoinduced electron transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. J Am Chem Soc 128(6):1818–1827Google Scholar
  43. 43.
    Hirsch A (1999) Principles of fullerene reactivity. In: Hirsch A (ed) Fullerenes and related structures. Springer, Berlin/Heidelberg, pp 1–65Google Scholar
  44. 44.
    Lebedeva MA, Chamberlain TW, Khlobystov AN (2015) Harnessing the synergistic and complementary properties of fullerene and transition-metal compounds for nanomaterial applications. Chem Rev 115(20):11301–11351Google Scholar
  45. 45.
    Imahori H et al (2004) Long-lived charge-separated state generated in a ferrocene–meso,meso-linked porphyrin trimer–fullerene pentad with a high quantum yield. Chem Eur J 10(13):3184–3196Google Scholar
  46. 46.
    Llansola-Portoles MJ et al (2015) Artificial photosynthesis: from molecular to hybrid nanoconstructs. In: Rozhkova E, Ariga K (eds) From molecules to materials – pathways to artificial photosynthesis. Springer International Publishing, ChamGoogle Scholar
  47. 47.
    Moore GF et al (2008) A bioinspired construct that mimics the proton coupled electron transfer between P680•+ and the TyrZ-His190 pair of photosystem II. J Am Chem Soc 130(32):10466–10467Google Scholar
  48. 48.
    Megiatto JD et al (2012) Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation. Proc Natl Acad Sci 109:15578–15583Google Scholar
  49. 49.
    van de Krol R, Grätzel M (2012) Photoelectrochemical hydrogen production. Springer, New YorkGoogle Scholar
  50. 50.
    Kondratenko EV et al (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6(11):3112–3135Google Scholar
  51. 51.
    Fenwick AQ, Gregoire JM, Luca OR (2015) Electrocatalytic reduction of nitrogen and carbon dioxide to chemical fuels: challenges and opportunities for a solar fuel device. J Photochem Photobiol B Biol 152:47–57Google Scholar
  52. 52.
    Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci 108(34):14049–14054Google Scholar
  53. 53.
    Lubitz W et al (2014) Hydrogenases. Chem Rev 114(8):4081–4148Google Scholar
  54. 54.
    Appel AM et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658Google Scholar
  55. 55.
    Hoffman BM et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114(8):4041–4062Google Scholar
  56. 56.
    Berardi S et al (2014) Molecular artificial photosynthesis. Chem Soc Rev 43(22):7501–7519Google Scholar
  57. 57.
    Weinberg DR et al (2012) Proton-coupled electron transfer. Chem Rev 112(7):4016–4093Google Scholar
  58. 58.
    Brudvig GW (2008) Water oxidation chemistry of photosystem II. Philos Trans R Soc B 363(1494):1211–1219Google Scholar
  59. 59.
    You H et al (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42(7):2880–2904Google Scholar
  60. 60.
    Cook TR et al (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502Google Scholar
  61. 61.
    Luca OR, Crabtree RH (2013) Redox-active ligands in catalysis. Chem Soc Rev 42(4):1440–1459Google Scholar
  62. 62.
    Tsui EY, Kanady JS, Agapie T (2013) Synthetic cluster models of miological and heterogeneous manganese catalysts for O2 evolution. Inorg Chem 52(24):13833–13848Google Scholar
  63. 63.
    DuBois DL (2014) Development of molecular electrocatalysts for energy storage. Inorg Chem 53(8):3935–3960Google Scholar
  64. 64.
    Artero V, Fontecave M (2013) Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem Soc Rev 42(6):2338–2356Google Scholar
  65. 65.
    Kaeffer N et al (2016) The dark side of molecular catalysis: diimine–dioxime cobalt complexes are not the actual hydrogen evolution electrocatalyst in acidic aqueous solutions. ACS Catal 6(6):3727–3737Google Scholar
  66. 66.
    Materna KL et al (2016) Heterogenized iridium water-oxidation catalyst from a silatrane precursor. ACS Catal 6(8):5371–5377Google Scholar
  67. 67.
    Sala X et al (2014) Molecular water oxidation mechanisms followed by transition metals: state of the art. Acc Chem Res 47(2):504–516Google Scholar
  68. 68.
    Hunter BM, Gray HB, Müller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116(22):14120–14136Google Scholar
  69. 69.
    Carmo M et al (2013) A comprehensive review on PEM water electrolysis. Int J Hydrog Energy 38(12):4901–4934Google Scholar
  70. 70.
    Smith RDL et al (2013) Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340(6128):60–63Google Scholar
  71. 71.
    Najafpour MM et al (2016) Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem Rev 116(5):2886–2936Google Scholar
  72. 72.
    Deng X, Tüysüz H (2014) Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges. ACS Catal 4(10):3701–3714Google Scholar
  73. 73.
    Suen N-T et al (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365Google Scholar
  74. 74.
    Surendranath Y, Dincǎ M, Nocera DG (2009) Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J Am Chem Soc 131(7):2615–2620Google Scholar
  75. 75.
    Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645–648Google Scholar
  76. 76.
    Zeng Q et al (2015) Role of ligands in catalytic water oxidation by mononuclear ruthenium complexes. Coord Chem Rev 304:88–101Google Scholar
  77. 77.
    Duan L et al (2015) Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands. Acc Chem Res 48(7):2084–2096Google Scholar
  78. 78.
    Thomsen JM et al (2015) Iridium-based complexes for water oxidation. Dalton Trans 44(28):12452–12472Google Scholar
  79. 79.
    Ashford DL et al (2015) Molecular chromophore–catalyst assemblies for solar fuel applications. Chem Rev 115(23):13006–13049Google Scholar
  80. 80.
    Karkas MD, Akermark B (2016) Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Trans 45(37):14421–14461Google Scholar
  81. 81.
    Zhang B et al (2014) Electrochemical and photoelectrochemical water oxidation by supported cobalt–oxo cubanes. ACS Catal 4(3):804–809MathSciNetGoogle Scholar
  82. 82.
    Okamura M et al (2016) A pentanuclear iron catalyst designed for water oxidation. Nature 530(7591):465–468Google Scholar
  83. 83.
    Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51Google Scholar
  84. 84.
    Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180Google Scholar
  85. 85.
    Benck JD et al (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4(11):3957–3971Google Scholar
  86. 86.
    Merki D et al (2012) Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci 3(8):2515–2525Google Scholar
  87. 87.
    Click KA et al (2016) Membrane-inspired acidically stable dye-sensitized photocathode for solar fuel production. J Am Chem Soc 138(4):1174–1179Google Scholar
  88. 88.
    Xu T, Chen D, Hu X (2015) Hydrogen-activating models of hydrogenases. Coord Chem Rev 303:32–41Google Scholar
  89. 89.
    Queyriaux N et al (2015) Recent developments in hydrogen evolving molecular cobalt(II)–polypyridyl catalysts. Coord Chem Rev 304:3–19Google Scholar
  90. 90.
    Artero V, Saveant J-M (2014) Toward the rational benchmarking of homogeneous H2-evolving catalysts. Energy Environ Sci 7(11):3808–3814Google Scholar
  91. 91.
    Kaeffer N et al (2016) Covalent design for dye-sensitized H2-evolving photocathodes based on a cobalt diimine–dioxime catalyst. J Am Chem Soc 138(38):12308–12311Google Scholar
  92. 92.
    Qiao J et al (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43(2):631–675Google Scholar
  93. 93.
    Bonin J, Maurin A, Robert M (2017) Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coord Chem Rev 334:184–198Google Scholar
  94. 94.
    Sahara G et al (2016) Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)–Re(I) complex photocatalyst and a CoOx/TaON photoanode. J Am Chem Soc 138(42):14152–14158Google Scholar
  95. 95.
    Bligaard T et al (2016) Toward benchmarking in catalysis science: best practices, challenges, and opportunities. ACS Catal 6(4):2590–2602Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matthieu Koepf
    • 1
  • Anne-Lucie Teillout
    • 2
  • Manuel J. Llansola-Portoles
    • 3
    Email author
  1. 1.Laboratoire de Chimie et Biologie des Métaux UMR 5249 (CEA-CNRS-Université Grenoble Alpes)CEA – Atomic Energy and Alternative Energies CommissariatGrenobleFrance
  2. 2.Laboratoire de Chimie Physique, UMR 8000, EPECUniv Paris-SudOrsayFrance
  3. 3.Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations