Advertisement

Life Cycle of Ion Exchangers in Nuclear Industry: Application and Management of Spent Exchangers

  • R. O. Abdel RahmanEmail author
  • S. S. Metwally
  • A. M. El-Kamash
Reference work entry

Abstract

Ion exchange technique is one of the widely applied conventional treatment options in nuclear industry, which is used to reduce the volume of aqueous radioactive waste streams, to separate isotopes and in decontamination operations. After being exhausted, spent exchangers are considered as radioactive waste and consequently they must be safely managed to minimize their environmental impacts. Exchangers’ selection and operating conditions optimization are affected by the waste and exchanger characteristics. In this chapter, the life cycle of the exchange materials will be traced starting from material preparation to disposal. Within this context, sources of radioactive wastes and their important characteristics will be introduced. Exchanger preparation and characterization methods will be overviewed. Chemical, mechanical, and radiological design criteria that affect performances of the process will be summarized. Treatment and immobilization options of spent ion exchangers will be overviewed and methods to assess immobilization sustainability will be highlighted.

Keywords

Ion exchange Radioactive aqueous streams Performance Treatment Immobilization 

References

  1. 1.
    IAEA (1995) The principles of radioactive waste management. Safety series no. 111-F. International Atomic Energy Agency, ViennaGoogle Scholar
  2. 2.
    Abdel Rahman RO (2012) Planning and implementation of radioactive waste management system. In: Abdel Rahman RO (ed) Radioactive waste. InTech, Rijeka, pp 3–18. http://www.intechopen.com/books/radioactive-waste/planning-and-implementation-of-radioactive-waste-management-systemCrossRefGoogle Scholar
  3. 3.
    Abdel Rahman RO, El Kamash AM, Zaki AA, El Sourougy MR (2005) Disposal: a last step towards an integrated waste management system in Egypt. In: International conference on the safety of radioactive waste disposal, Tokyo, IAEA-CN-135/81, pp 317–324Google Scholar
  4. 4.
    IAEA (2003) Radioactive waste management glossary, 2003rd edn. International Atomic Energy Agency, ViennaGoogle Scholar
  5. 5.
    Abdel Rahman RO, Rakhimov RZ, Rakhimova NR, Ojovan MI (2014) Cementitious materials for nuclear waste immobilisation. Wiely, New York, ISBN 9781118512005CrossRefGoogle Scholar
  6. 6.
    Abdel Rahman RO, Guskov A, Kozak M, Hung YT (2016) Recent evaluation of early radioactive disposal practice. In: Wang LK, Wang MS, Hung YT, Shammas NK (eds) Handbook of environmental engineering, vol 17, Natural resources and control processes. Springer,Switzerland, pp 371–400.  https://doi.org/10.1007/978-3-319-26800-2_8CrossRefGoogle Scholar
  7. 7.
    IAEA (2009) Classification of radioactive waste: general safety guide GSG-1. IAEA, ViennaGoogle Scholar
  8. 8.
    IAEA (2001) Handling and processing of radioactive waste from nuclear applications. TRS, 402. International Atomic Energy Agency, ViennaGoogle Scholar
  9. 9.
    Nasef MM, Ujang Z (2012) Introduction to ion exchange processes. In: Luqman IM (ed) Ion exchange technology: theory and principals. Springer, NetherlandsGoogle Scholar
  10. 10.
    Metwally SS, Ahmed IM, Rizk HE (2017) Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution. J Alloys Compd 709:438–444CrossRefGoogle Scholar
  11. 11.
    Varshney D (2003) Synthetic ion exchange materials and their analytical applications: past, present and future. In: Sajgalík P, Drábik M, Varga S (eds) Solid state phenomena, vols 90–91. pp 445–450. Solid State Chemistry V, Trans Tech Publication LTD, 10.4028/www.scientific.net/SSP.90-91.445CrossRefGoogle Scholar
  12. 12.
    Lehto J, Brodkin L, Harjula R, Tusa E (1999) Separation of radioactive strontium from alkaline nuclear waste solutions with the highly effective ion exchanger SrTreat. Nucl Technol 127:81–87CrossRefGoogle Scholar
  13. 13.
    Clearfield A, Bortun LN, Bortun AI (2000) Alkali metal ion exchange by the framework titanium silicate M2Ti2O3SiO4·nH2O (M=H, Na). React Funct Polym 43:85–95CrossRefGoogle Scholar
  14. 14.
    Clearfield A (2000) Inorganic ion exchangers, past, present, and future. Solvent Extr Ion Exch 18:655–678CrossRefGoogle Scholar
  15. 15.
    Da Silva MLCP, Da Silva GLJP, Filho DNV (2002) Hydrous Tantalum Phosphates for Ion Exchange Purposes: A Systematic Study. Mater Res 5:71–75CrossRefGoogle Scholar
  16. 16.
    Metwally SS, Ghaly M, El-Sherief EA (2017) Physicochemical properties of synthetic nano birnessite and its enhanced scavenging of Co2+ and Sr2+ ions from aqueous solutions. Mater Chem Phys 193:63–72CrossRefGoogle Scholar
  17. 17.
    Ghaly M, El-Dars FMSE, Hegazy MM, Abdel Rahman RO (2016) Evaluation of synthetic Birnessite utilization as a sorbent for cobalt and strontium removal from aqueous solution. Chem Eng J 284:1373–1385CrossRefGoogle Scholar
  18. 18.
    Harjula R, Lehto J, Paajanen A, Brodkin L (2001) Removal of Radioactive Cesium from Nuclear Waste Solutions with the Transition Metal Hexacyanoferrate Ion Exchanger CsTreat Nucl Sci Eng 137:206–214CrossRefGoogle Scholar
  19. 19.
    El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432–445CrossRefGoogle Scholar
  20. 20.
    Abdel Rahman RO, Ibrahim HA, Abdel Monem NM (2009) Long-term performance of zeolite Na A-X blend as backfill material in near surface disposal vault. Chem Eng J 149:143–152CrossRefGoogle Scholar
  21. 21.
    Abdel Rahman RO, Ibrahim HA, Hanafy M, Abdel Monem NM (2010) Assessment of synthetic zeolite NaA-X as sorbing barrier for strontium in a radioactive disposal facility. Chem Eng J 157:100–112CrossRefGoogle Scholar
  22. 22.
    El-Naggar MR, El-Kamash AM, El-Dessouky MI, Ghonaim AK (2008) Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J Hazard Mater 154:963–972CrossRefGoogle Scholar
  23. 23.
    Abdel Rahman RO, Abdel Moamen OA, Hanafy M, Abdel Monem NM (2012) Preliminary investigation of zinc transport through zeolite-X barrier: linear isotherm assumption. Chem Eng J 185–186:61–70CrossRefGoogle Scholar
  24. 24.
    Abdel Moamen OA, Ismail IM, Abdel Monem NM, Abdel Rahman RO (2015) Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nano-sized zeolites. J Taiwan Inst Chem Eng 55:133–144CrossRefGoogle Scholar
  25. 25.
    El-Kamash AM, Zaki AA, Abed El Geleel M (2005) Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solution using synthetic zeolite A. J Hazard Mater 127:211–220CrossRefGoogle Scholar
  26. 26.
    Abd El-Rahman KM, El-Kamash AM, El-Sourougy MR, Abdel Moniem NM (2006) Thermodynamic modeling for the removal of Cs+, Sr2+, Ca2+, and Mg2+ ions from aqueous waste solution using zeolite A. J Radioanal Nucl Chem 268(2):221–230CrossRefGoogle Scholar
  27. 27.
    Sharma P, Sharma M, Tomar R (2013) Na HEU zeolite synthesis for the removal of Th(IV) and Eu(III) from aqueous waste by batch process. J Taiwan Inst Chem Eng 44:480–488CrossRefGoogle Scholar
  28. 28.
    Flainigen EM (1991) In: van Bekkum H, Flainigen EM, Jansen JC (eds) Introduction to zeolite science and practice, vol 13. Elsevier, AmsterdamGoogle Scholar
  29. 29.
    Abdel Rahman RO, Ojovan MI(2017) Ch 15, Application of nano-materials in radioactive waste management. In: Zhang TC, Gurjar BR, Govil JN (eds) Environmental science and engineering, vol 10, Industrial processes & nanotechnology. Studium Press, LLC, pp 361–378, ISBN 10: 1-62699-098-0Google Scholar
  30. 30.
    Sahu BB, Mishra HK, Parida K (2000) Cation exchange and sorption properties of TIN(IV) phosphate. J Colloid Interface Sci 225:511–519CrossRefGoogle Scholar
  31. 31.
    Jiang P, Pan B, Pan B, Zhang W, Zhang Q (2008) A comparative study on lead sorption by amorphous and crystalline zirconium phosphates. Colloids Surf A Physicochem Eng Asp 322:108–112CrossRefGoogle Scholar
  32. 32.
    Michel C, Barré Y, De Windt L, de Dieuleveult C, Brackx E, Grandjean A (2017) Ion exchange and structural properties of a new cyanoferrate mesoporous silica material for Cs removal from natural saline waters. J Environ Chem Eng 5:810–817CrossRefGoogle Scholar
  33. 33.
    El-Kamash AM, El-Gammal B, El-Sayed AA (2007) Preparation and evaluation of cerium(IV) tungstate powder as inorganic exchanger in sorption of cobalt and europium ions from aqueous solutions. J Hazard Mater 141:719CrossRefGoogle Scholar
  34. 34.
    Abdel Rahman RO, Ibrahium HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565CrossRefGoogle Scholar
  35. 35.
    Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–701CrossRefGoogle Scholar
  36. 36.
    Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology. Noyes Publications, Park RidgeGoogle Scholar
  37. 37.
    Ames LL Jr (1963) Synthesis of a clinoptilolite-like zeolite. Am Mineral 48:1374–1381Google Scholar
  38. 38.
    Sinha PK, Amalraj RV, Krishnasamy V (1993) Flocculation studies on freshly precipitated copper ferrocyanide for the removal of cesium from radioactive liquid waste. Waste Manag 13:341–350CrossRefGoogle Scholar
  39. 39.
    Metwally E, Abd El-Rahman RO, Ayoub RR (2007) Modeling batch kinetics of cesium, cobalt and strontium ions adsorption from aqueous solutions using hydrous titanium oxide. Radiochim Acta 95:409–416CrossRefGoogle Scholar
  40. 40.
    Gasser MS, Mekhamer HS, Abdel Rahman RO (2016) Optimization of the utilization of Mg/Fe hydrotalcite like compounds in the removal of Sr(II) from aqueous solution. J Environ Chem Eng 4:4619–4630CrossRefGoogle Scholar
  41. 41.
    Gasser MS, El Sherif E, Abdel Rahman RO (2017) Modification of Mg-Fe hydrotalcite using Cyanex 272 for lanthanides separation. Chem Eng J 316:758–769CrossRefGoogle Scholar
  42. 42.
    Lee CG, Alvarez PJJ, Nam A, Park SJ, Do T, Choi US, Lee SH (2017) Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: kinetic, equilibrium, and regeneration studies. J Hazard Mater 325:223–229CrossRefGoogle Scholar
  43. 43.
    Young GK, Ung SC, Tai YK, Dong JA, Yong JC (2002) FT-IR and isotherm study on anion adsorption onto novel chelating fiber. Macromol Rapid Commun 23:535–539CrossRefGoogle Scholar
  44. 44.
    Bajpai SK, Susamma J (2005) Superabsorbent hydrogels for removal of divalent toxic ions. Part I: synthesis and swelling characterization. React Funct Polym 62:271–283CrossRefGoogle Scholar
  45. 45.
    Metwally SS, El-gammal B, Aly HF, Abo-el-enein SA (2011) Removal and separation of some radionuclides by poly-acrylamide based Ce(IV) phosphate from radioactive waste solutions. Sep Sci Technol 46:1808–1821CrossRefGoogle Scholar
  46. 46.
    El-Gammal B, Metwally SS, Aly HF, Abo-El-Enein SA (2012) Verification of double-shell model for sorption of cesium, cobalt, and europium ions on poly-acrylonitrile-based Ce(IV) phosphate from aqueous solutions. Desalin Water Treat 46:1–15CrossRefGoogle Scholar
  47. 47.
    Metwally SS, Ayoub RR, Aly HF (2013) Amidoximation of cyano group for chelating ion exchange of some heavy metal ions from wastewater. Sep Sci Technol 48:1829–1839CrossRefGoogle Scholar
  48. 48.
    Mohamed WR, Metwally SS, Ibrahim HA, El-Sherief EA, Mekhamer HS, Moustafa IMI, Mabrouk EM (2017) Impregnation of task-specific ionic liquid into a solid support for removal of neodymium and gadolinium ions from aqueous solution. J Mol Liq 236:9–17CrossRefGoogle Scholar
  49. 49.
    Naser AA, Sharaf El-deen GE, Bhran AA, Metwally SS, El-Kamash AM (2015) Elaboration of impregnated composite for sorption of europium and neodymium ions from aqueous solutions. J Ind Eng Chem 32:264–272CrossRefGoogle Scholar
  50. 50.
    Kim YK, Kim Y, Kim S, Harbottle D, Lee JW (2017) Solvent-assisted synthesis of potassium copper hexacyanoferrate embedded 3D-interconnected porous hydrogel for highly selective and rapid cesium ion removal. J Environ Chem Eng 5:975–986CrossRefGoogle Scholar
  51. 51.
    Borai EH, Hamed MG, El-Kamash AM, Siyam T, El-Sayed GO (2015) Template polymerization synthesis of hydrogel and silica composite for sorption of some rare earth elements. J Colloid Interface Sci 456:228–240CrossRefGoogle Scholar
  52. 52.
    IAEA (2002) Application of ion exchange process for treatment of radioactive waste. Technical report series 408. International Atomic Energy Agency, ViennaGoogle Scholar
  53. 53.
    Dounreay Site Restoration Ltd (2009) A review of national and international best practice on waste minimisation, DEC(09)P175, Mar 2009, pp 1–60Google Scholar
  54. 54.
    Chapter 1 ref 0.8 Resin and FILTER handbook primers and product informationGoogle Scholar
  55. 55.
    Abdel Rahman RO (2011) Preliminary evaluation of the technical feasibility of using different soils in waste disposal cover system. Environ Prog Sustain Energy 30(1):19–28CrossRefGoogle Scholar
  56. 56.
    Tariqul Islam MD, Dafader NC, Poddar P, Khan NMDS, Chowdhury AMS (2016) Studies on swelling and absorption properties of the γ– irradiated polyvinyl alcohol (PVA)/kappa-carrageenan blend hydrogels. Adv Chem Eng 6:2.  https://doi.org/10.4172/2090-4568.1000153CrossRefGoogle Scholar
  57. 57.
    IAEA (1986) Ion exchange technology. tecdoc 365. International Atomic Energy Agency, ViennaGoogle Scholar
  58. 58.
    Simon GP (1991) Ion exchange training manual. Springer science, NetherlandsCrossRefGoogle Scholar
  59. 59.
    Gauthier MA, Luo J, Calvet D, Ni C, Zhu XX, Garon M, Buschmann MD (2004) Degree of crosslinking and mechanical properties of crosslinked poly(vinyl alcohol) beads for use in solid-phase organic synthesis. Polymer 45:8201–8210CrossRefGoogle Scholar
  60. 60.
    Richardson JF, Harker JH, Backhurst JB(2002) Flow of fluids through granular beds and packed columns. In: Harker JH, Backhurst JR, Richardson JF(eds) Chemical engineering, 5th edn, vol 2. pp 191–236, Butterworth Heinemann, OxfordCrossRefGoogle Scholar
  61. 61.
    Westinghouse Technology Systems Manual. Chemical and volume control system, USNRC HRTD, Rev 1208Google Scholar
  62. 62.
    Power plants energized by Lanxess, Lewatit. Ion exchange resin for the power industry: focus on internal water circuitsGoogle Scholar
  63. 63.
    Fredric S, Marsh K, Pillay KS(1993) Effects of ionizing radiation on modern ion exchange materials, LA-12655-MS, Oct 1993-Los Alamos reportGoogle Scholar
  64. 64.
    Traboulsi A, Labed V, Dauvois V, Dupuy N, Rebufa C (2013) Gamma radiation effect on gas production in anion exchange resins. Nucl Inst Methods Phy Res B 312:7–14CrossRefGoogle Scholar
  65. 65.
    Hiser MA, Pulvirenti AL, Al-Sheikhly M(2013) Monitoring degradation of phenolic resin-based neutron absorbers in spent nuclear fuel pools, June 2013. U.S. Nuclear Regulatory CommissionGoogle Scholar
  66. 66.
    Gangwer TE, Goldstein M, Pillay KKS (1977) Radiation effects on ion exchange materials, Nov 1977, under contract NO. EY-76-C-02-0016 US DOE, BNL 50781Google Scholar
  67. 67.
    Abdel Rahman RO, Kozak MW, Hung YT (2014) Radioactive pollution and control. In: Hung YT, Wang LK, Shammas NK (eds) Handbook of environment and waste management. World Scientific, Singapore, pp 949–1027.  https://doi.org/10.1142/9789814449175_0016CrossRefGoogle Scholar
  68. 68.
    Drace Z, Mele I, Ojovan MI, Abdel Rahman RO (2012) An overview of research activities on cementitious materials for radioactive waste management. Mater Res Soc Symp Proc 1475:253–264CrossRefGoogle Scholar
  69. 69.
    Luca V, Bianchi HL, Manzini AC (2012) Cation immobilization in pyrolyzed simulated spent ion exchange resins. J Nucl Mater 424:1–11CrossRefGoogle Scholar
  70. 70.
    Abdel Rahman RO, Ojovan MI (2016) Recent trends in the evaluation of cementitious material in radioactive waste disposal. In: Wang LK, Wang MS, Hung YT, Shammas NK (eds) Handbook of environmental engineering, vol 17, Natural resources and control processes. Springer, pp 401–448.  https://doi.org/10.1007/978-3-319-26800-2_9. http://link.springer.com/chapter/10.1007/978-3-319-26800-2_9/fulltext.htmlCrossRefGoogle Scholar
  71. 71.
    Abdel Rahman RO, El-Kamash AM, Zaki AA (2007) Modeling the long term leaching behavior of 137Cs, 60Co, and152,154Eu radionuclides from cement- clay matrices. Hazard Mater 145:372–380CrossRefGoogle Scholar
  72. 72.
    Abdel Rahman RO, Zaki AA (2011) Comparative study of leaching conceptual models: Cs leaching from different ILW cement based matrices. Chem Eng J 173:722–736CrossRefGoogle Scholar
  73. 73.
    Abdel Rahman RO, Zein DH, Abo Shadi H (2014) Cesium binding and leaching from single and binary contaminant cement-bentonite matrices. Chem Eng J 245:276–287CrossRefGoogle Scholar
  74. 74.
    Abdel Rahman RO, Ojovan MI (2014) Leaching tests and modelling of cementitious wasteforms corrosion. Innov Corros Mater Sci 4(2):90–95.  https://doi.org/10.2174/2352094904666141126221626CrossRefGoogle Scholar
  75. 75.
    Ojovan MI, Varlackov GA, Golubev ZI, Burlak ON (2011) Long-term field and laboratory leaching tests of cemented radioactive wastes. J Hazard Mater 187:296–302CrossRefGoogle Scholar
  76. 76.
    Mattigod SV, Wellman DM, Bovaird CC, Parker KE, Recknagle KP, Clayton L, Wood MI (2012) Diffusion of radionuclides in concrete and soil. In: Abdel Rahman RO (ed) Ratioactive waste. INTECH, pp 331–350. http://www.intechopen.com/books/radioactive-waste

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. O. Abdel Rahman
    • 1
    Email author
  • S. S. Metwally
    • 1
  • A. M. El-Kamash
    • 1
  1. 1.Hot Lab. CenterAtomic Energy Authority of EgyptCairoEgypt

Personalised recommendations