Skip to main content

G Protein α i/o/z

  • Reference work entry
  • First Online:
  • 852 Accesses

Synonyms

Adenylyl cyclase inhibitory Gi alpha subunit; G alpha (o); G alpha z; G protein alpha i; G protein alpha o; G protein alpha z; G protein a i; G protein a o; G protein a z; Gi protein alpha subunit; GNAI; GNAO; GNAO1; GNAZ; Go alpha subunit; Guanine nucleotide binding protein, alpha inhibiting; Guanine nucleotide binding protein, alpha o; Guanine nucleotide binding protein, alpha z subunit; Guanine nucleotide binding regulatory protein, alpha i; Gz alpha subunit

Historical Background: Discovery of G Protein α i as the Inhibitor of Hormone-Stimulated Adenylyl Cyclase Activity

During the discovery purification that identified G protein (alpha) s (Gαs) as the adenylyl cyclase activator, Gilman and colleagues noted a 41 kDa contaminating protein (now known as G protein alpha i (Gαi)) that persisted into the final stages of the Gsαβγ heterotrimer purification. Hormonal activation and inhibition of adenylyl cyclasewere known at the time to be GTP-dependent. The 41 kDa protein was...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari A, Sprang SR. Thermodynamic characterization of the binding of activator of G protein signaling 3 (AGS3) and peptides derived from AGS3 with G alpha i1. J Biol Chem. 2003;278:51825–32.

    Article  PubMed  CAS  Google Scholar 

  • Afshar K, Willard FS, Colombo K, Johnston CA, McCudden CR, Siderovski DP, Gonczy P. RIC-8 is required for GPR-1/2-dependent ga function during asymmetric division of C. elegans embryos. Cell. 2004;119:219–30.

    Article  PubMed  CAS  Google Scholar 

  • Baculikova M, Fiala R, Jezova D, Macho L, Zorad S. Rats with monosodium glutamate-induced obesity and insulin resistance exhibit low expression of Gαlpha(i2) G-protein. Gen Physiol Biophys. 2008;27:222–6.

    PubMed  CAS  Google Scholar 

  • Barr FA, Leyte A, Mollner S, Pfeuffer T, Tooze SA, Huttner WB. Trimeric G-proteins of the trans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules. FEBS Lett. 1991;294:239–43.

    Article  PubMed  CAS  Google Scholar 

  • Beckers CJ, Balch WE. Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J Cell Biol. 1989;108:1245–56.

    Article  PubMed  CAS  Google Scholar 

  • Berman DM, Gilman AG. Mammalian RGS proteins: barbarians at the gate. J Biol Chem. 1998;273:1269–72.

    Article  PubMed  CAS  Google Scholar 

  • Bernard ML, Peterson YK, Chung P, Jourdan J, Lanier SM. Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J Biol Chem. 2001;276:1585–93.

    Article  PubMed  CAS  Google Scholar 

  • Blackmer T, Larsen EC, Takahashi M, Martin TF, Alford S, Hamm HE. G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science. 2001;292:293–7.

    Article  CAS  PubMed  Google Scholar 

  • Blackmer T, Larsen EC, Bartleson C, Kowalchyk JA, Yoon EJ, Preininger AM, Alford S, Hamm HE, Martin TF. G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis. Nat Neurosci. 2005;8:421–5.

    Article  PubMed  CAS  Google Scholar 

  • Blumer JB, Smrcka AV, Lanier SM. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther. 2007;113:488–506.

    Article  PubMed  CAS  Google Scholar 

  • Blumer JB, Sadik Oner S, Lanier SM. Group II activators of G-protein signaling and proteins containing a G-protein regulatory motif. Acta Physiol. 2011;204:202–18.

    Article  CAS  Google Scholar 

  • Casey PJ, Fong HK, Simon MI, Gilman AG. Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem. 1990;265:2383–90.

    PubMed  CAS  Google Scholar 

  • Ch’ng Q, Sieburth D, Kaplan JM. Profiling synaptic proteins identifies regulators of insulin secretion and lifespan. PLoS Genet. 2008;4:e1000283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen JF, Guo JH, Moxham CM, Wang HY, Malbon CC. Conditional, tissue-specific expression of Q205L G alpha i2 in vivo mimics insulin action. J Mol Med. 1997;75:283–9.

    Article  PubMed  CAS  Google Scholar 

  • Chen-Goodspeed M, Lukan AN, Dessauer CW. Modeling of G alpha(s) and G alpha(i) regulation of human type V and VI adenylyl cyclase. J Biol Chem. 2005;280:1808–16.

    Article  PubMed  CAS  Google Scholar 

  • Chisari M, Saini DK, Kalyanaraman V, Gautam N. Shuttling of G protein subunits between the plasma membrane and intracellular membranes. J Biol Chem. 2007;282:24092–8.

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE, Neer EJ. G protein βγ subunits. Annu Rev Pharmacol Toxicol. 1997;37:167–203.

    Article  CAS  PubMed  Google Scholar 

  • Coleman D, Berghuis A, Lee E, Linder M, Gilman A, Sprang SR. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science. 1994;265:1405–12.

    Article  PubMed  CAS  Google Scholar 

  • Couwenbergs C, Spilker AC, Gotta M. Control of embryonic spindle positioning and Ga activity by C. elegans RIC-8. Curr Biol. 2004;14:1871–6.

    Article  PubMed  CAS  Google Scholar 

  • Denker SP, McCaffery JM, Palade GE, Insel PA, Farquhar MG. Differential distribution of alpha subunits and beta gamma subunits of heterotrimeric G proteins on Golgi membranes of the exocrine pancreas. J Cell Biol. 1996;133:1027–40.

    Article  PubMed  CAS  Google Scholar 

  • Dessauer CW, Tesmer JJG, Sprang SR, Gilman AG. Identification of a Gia binding site on type V adenylyl cyclase. J Biol Chem. 1998;273:25831–9.

    Article  PubMed  CAS  Google Scholar 

  • Didsbury JR, Snyderman R. Molecular cloning of a new human G protein evidence for two Gia like protein families. FEBS Lett. 1987;219:259–63.

    Article  PubMed  CAS  Google Scholar 

  • Elliott MR. Coordinating speed and amplitude in G-protein signaling. Curr Biol. 2008;18:R777–83.

    Article  CAS  Google Scholar 

  • Exton JH. Phosphoinositide phospholipases and G proteins in hormone action. Annu Rev Physiol. 1994;56:349–69.

    Article  PubMed  CAS  Google Scholar 

  • Farr GW, Scharl EC, Schumacher RJ, Sondek S, Horwich AL. Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell. 1997;89:927–37.

    Article  PubMed  CAS  Google Scholar 

  • Gabay M, Pinter ME, Wright FA, Chan P, Murphy AJ, Valenzuela DM, Yancopoulos GD, Tall GG. Ric-8 proteins are molecular chaperones that direct nascent G protein a subunit membrane association. Sci Signal. 2011;4:ra79.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Marcos M, Ear J, Farquhar MG, Ghosh P. A GDI and a GEF regulate autophagy by balancing g protein activity and growth factor signals. Mol Biol Cell. 2011;22:673–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gawler D, Milligan G, Spiegel AM, Unson CG, Houslay MD. Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabetes. Nature. 1987;327:229–32.

    Article  PubMed  CAS  Google Scholar 

  • Gerachshenko T, Blackmer T, Yoon EJ, Bartleson C, Hamm HE, Alford S. Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. Nat Neurosci. 2005;8:597–605.

    Article  CAS  PubMed  Google Scholar 

  • Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–49.

    Article  PubMed  CAS  Google Scholar 

  • Gilman A. G proteins and regulation of adenylyl cyclase. Biosci Rep. 1995;15:65–97.

    Article  PubMed  CAS  Google Scholar 

  • Gohla A, Klement K, Piekorz RP, Pexa K, von Dahl S, Spicher K, Dreval V, Haussinger D, Birnbaumer L, Nurnberg B. An obligatory requirement for the heterotrimeric G protein Gi3 in the antiautophagic action of insulin in the liver. Proc Natl Acad Sci USA. 2007;104:3003–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonczy P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol. 2008;9:355–66.

    Article  PubMed  CAS  Google Scholar 

  • Gotta M, Ahringer J. Distinct roles for Galpha and Gbetagamma in regulating spindle position and orientation in caenorhabditis elegans embryos. Nat Cell Biol. 2001;3:297–300.

    Article  PubMed  CAS  Google Scholar 

  • Gulbenkian A, Schobert L, Nixon C, Tabachnick II A. Metabolic effects of pertussis sensitization in mice and rats. Endocrinology. 1968;83:885–92.

    Article  PubMed  CAS  Google Scholar 

  • Gutkind JS. Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE. 2000;2000:re1.

    Article  PubMed  CAS  Google Scholar 

  • Hajdu-Cronin YM, Chen WJ, Patikoglou G, Koelle MR, Sternberg PW. Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev. 1999;13:1780–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hausdorff WP, Pitcher JA, Luttrell DK, Linder ME, Kurose H, Parsons SJ, Caron MG, Lefkowitz RJ. Tyrosine phosphorylation of G protein alpha subunits by pp 60c-src. Proc Natl Acad Sci. 1992;89:5720–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hess HA, Roper J-C, Grill SW, Koelle MR. RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell. 2004;119:209–18.

    Article  PubMed  CAS  Google Scholar 

  • Hollinger S, Hepler JR. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev. 2002;54:527–59.

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Charbeneau RA, Fu Y, Kaur K, Gerin I, MacDougald OA, Neubig RR. Resistance to diet-induced obesity and improved insulin sensitivity in mice with a regulator of G protein signaling-insensitive G184S Gnai2 allele. Diabetes. 2008;57:77–85.

    Article  PubMed  CAS  Google Scholar 

  • Jamora C, Takizawa PA, Zaarour RF, Denesvre C, Faulkner DJ, Malhotra V. Regulation of Golgi structure through heterotrimeric G proteins. Cell. 1997;91:617–26.

    Article  PubMed  CAS  Google Scholar 

  • Jamora C, Yamanouye N, Van Lint J, Laudenslager J, Vandenheede JR, Faulkner DJ, Malhotra V. Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell. 1999;98:59–68.

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Reed RR. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem. 1987;262:14241–9.

    PubMed  CAS  Google Scholar 

  • Katada T, Ui M. Islet-activating protein. Enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophores. J Biol Chem. 1979;254:469–79.

    PubMed  CAS  Google Scholar 

  • Katada T, Ui M. Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. J Biol Chem. 1981a;256:8310–7.

    PubMed  CAS  Google Scholar 

  • Katada T, Ui M. In vitro effects of islet-activating protein on cultured rat pancreatic islets. Enhancement of insulin secretion, adenosine 3′:5′-monophosphate accumulation and 45Ca flux. J Biochem. 1981b;89:979–90.

    PubMed  CAS  Google Scholar 

  • Kimple RJ, Kimple ME, Betts L, Sondek J, Siderovski DP. Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature. 2002;416:878–81.

    Article  PubMed  CAS  Google Scholar 

  • Kimple RJ, Willard FS, Hains MD, Jones MB, Nweke GK, Siderovski DP. Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif. Biochem J. 2004;378:801–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimple ME, Nixon AB, Kelly P, Bailey CL, Young KH, Fields TA, Casey PJ. A role for G(z) in pancreatic islet beta-cell biology. J Biol Chem. 2005;280:31708–13.

    Article  PubMed  CAS  Google Scholar 

  • Kimple ME, Joseph JW, Bailey CL, Fueger PT, Hendry IA, Newgard CB, Casey PJ. Galphaz negatively regulates insulin secretion and glucose clearance. J Biol Chem. 2008;283:4560–7.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita-Kawada M, Oberdick J, Xi ZM. A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Brain Res Mol Brain Res. 2004;132:73–86.

    Article  PubMed  CAS  Google Scholar 

  • Knoblich JA. Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol. 2010;11:849–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kreuzer J, Nurnberg B, Krieger-Brauer HI. Ligand-dependent autophosphorylation of the insulin receptor is positively regulated by Gi-proteins. Biochem J. 2004;380:831–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar P, Wu Q, Chambliss KL, Yuhanna IS, Mumby SM, Mineo C, Tall GG, Shaul PW. Direct interactions with Gai and Gβγ mediate nongenomic signaling by estrogen receptor a. Mol Endocrinol. 2007;21:1370–80.

    Article  PubMed  CAS  Google Scholar 

  • Lackner MR, Nurrish SJ, Kaplan JM. Facilitation of synaptic transmission by EGL-30 Gqa and EGL-8 PLC[beta]: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron. 1999;24:335–46.

    Article  PubMed  CAS  Google Scholar 

  • Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 1996;379:311–9.

    Article  PubMed  CAS  Google Scholar 

  • Lin HC, Duncan JA, Kozasa T, Gilman AG. Sequestration of the G protein beta gamma subunit complex inhibits receptor-mediated endocytosis. Proc Natl Acad Sci USA. 1998;95:5057–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Y-C, Huang J, Ali S, Lowry W, Huang X-Y. Src tyrosine kinase is a novel direct effector of G proteins. Cell. 2000;102:635–46.

    Article  PubMed  CAS  Google Scholar 

  • Maier O, Ehmsen E, Westermann P. Trimeric G protein alpha subunits of the Gs and Gi families localized at the Golgi membrane. Biochem Biophys Res Commun. 1995;208:135–43.

    Article  PubMed  CAS  Google Scholar 

  • Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB. Assembly and trafficking of heterotrimeric G proteins. Biochemistry. 2007;46:7665–77.

    Article  PubMed  CAS  Google Scholar 

  • McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. G-protein signaling: back to the future. Cell Mol Life Sci. 2005;62:551–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller KG, Emerson MD, Rand JB. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 1999;24:323–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mixon MB, Lee E, Coleman DE, Berghuis AM, Gilman AG, Sprang SR. Tertiary and quaternary structural changes in Gia1 induced by GTP hydrolysis. Science. 1995;270:954–60.

    Article  PubMed  CAS  Google Scholar 

  • Montmayeur JP, Borrelli E. Targeting of G alpha i2 to the Golgi by alternative spliced carboxyl-terminal region. Science. 1994;263:95–8.

    Article  PubMed  CAS  Google Scholar 

  • Moxham CM, Malbon CC. Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Nature. 1996;379:840–4.

    Article  PubMed  CAS  Google Scholar 

  • Muller L, Picart R, Barret A, Bockaert J, Homburger V, Tougard C. Identification of multiple subunits of heterotrimeric G proteins on the membrane of secretory granules in rat prolactin anterior pituitary cells. Mol Cell Neurosci. 1994;5:556–66.

    Article  PubMed  CAS  Google Scholar 

  • Mumby SM, Heukeroth RO, Gordon JI, Gilman AG. G-protein a-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci. 1990;87:728–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadella R, Blumer JB, Jia G, Kwon M, Akbulut T, Qian F, Sedlic F, Wakatsuki T, Sweeney Jr WE, Wilson PD, et al. Activator of G protein signaling 3 promotes epithelial cell proliferation in PKD. J Am Soc Nephrol. 2010;21:1275–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagahama M, Usui S, Shinohara T, Yamaguchi T, Tani K, Tagaya M. Inactivation of Galpha(z) causes disassembly of the Golgi apparatus. J Cell Sci. 2002;115:4483–93.

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Berk BC. Crosstalk coregulation mechanisms of G protein-coupled receptors and receptor tyrosine kinases. Methods Mol Biol. 2006;332:51–77.

    PubMed  CAS  Google Scholar 

  • Nathan D. Signalling via the G protein-activated K+ channels. Cell Signal. 1997;9:551–73.

    Article  Google Scholar 

  • Neer EJ, Lok JM, Wolf LG. Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem. 1984;259:14222–9.

    PubMed  CAS  Google Scholar 

  • Ogier-Denis E, Couvineau A, Maoret JJ, Houri JJ, Bauvy C, De Stefanis D, Isidoro C, Laburthe M, Codogno P. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem. 1995;270:13–6.

    Article  PubMed  CAS  Google Scholar 

  • Oner SS, An N, Vural A, Breton B, Bouvier M, Blumer JB, Lanier SM. Regulation of the AGS3.G{alpha}i signaling complex by a seven-transmembrane span receptor. J Biol Chem. 2010a;285:33949–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oner SS, Maher EM, Breton B, Bouvier M, Blumer JB. Receptor-regulated interaction of activator of G-protein signaling-4 and Galphai. J Biol Chem. 2010b;285:20588–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parmentier ML, Woods D, Greig S, Phan PG, Radovic A, Bryant P, O’Kane CJ. Rapsynoid/partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J Neurosci. 2000;20:RC84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Patel TB. Single transmembrane spanning heterotrimeric G protein-coupled receptors and their signaling cascades. Pharmacol Rev. 2004;56:371–85.

    Article  PubMed  CAS  Google Scholar 

  • Pimplikar SW, Simons K. Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature. 1993;362:456–8.

    Article  PubMed  CAS  Google Scholar 

  • Regard JB, Kataoka H, Cano DA, Camerer E, Yin L, Zheng YW, Scanlan TS, Hebrok M, Coughlin SR. Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J Clin Invest. 2007;117:4034–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Regner KR, Nozu K, Lanier SM, Blumer JB, Avner ED, Sweeney Jr WE, Park F. Loss of activator of G-protein signaling 3 impairs renal tubular regeneration following acute kidney injury in rodents. FASEB J. 2011;25:1844–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem. 2000;69:795–827.

    Article  PubMed  CAS  Google Scholar 

  • Sadana R, Dessauer CW. Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals. 2009;17:5–22.

    Article  PubMed  CAS  Google Scholar 

  • Saini DK, Chisari M, Gautam N. Shuttling and translocation of heterotrimeric G proteins and Ras. Trends Pharmacol Sci. 2009;30:278–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanada K, Tsai LH. G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell. 2005;122:119–31.

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Blumer JB, Simon V, Lanier SM. Accessory proteins for G proteins: partners in signaling. Annu Rev Pharmacol Toxicol. 2006;46:151–87.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer M, Shevchenko A, Knoblich JA. A protein complex containing inscuteable and the galpha-binding protein pins orients asymmetric cell divisions in Drosophila. Curr Biol. 2000;10:353–62.

    Article  PubMed  CAS  Google Scholar 

  • Schurmann A, Rosenthal W, Schultz G, Joost HG. Characterization of GTP-binding proteins in Golgi-associated membrane vesicles from rat adipocytes. Biochem J. 1992;283(Pt 3):795–801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwaninger R, Plutner H, Bokoch GM, Balch WE. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes. J Cell Biol. 1992;119:1077–96.

    Article  PubMed  CAS  Google Scholar 

  • Sharp GW. Mechanisms of inhibition of insulin release. Am J Phys. 1996;271:C1781–99.

    Article  CAS  Google Scholar 

  • Siderovski DP, Willard FS. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci. 2005;1:51–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smrcka A. G protein βγ subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci. 2008;65:2191–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sprang SR. G protein mechanisms: insights from structural analysis. Annu Rev Biochem. 1997;66:639–78.

    Article  PubMed  CAS  Google Scholar 

  • Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell. 1994;77:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Sternweis PC, Robishaw JD. Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem. 1984;259:13806–13.

    PubMed  CAS  Google Scholar 

  • Stow JL, de Almeida JB. Distribution and role of heterotrimeric G proteins in the secretory pathway of polarized epithelial cells. J Cell Sci Suppl. 1993;17:33–9.

    Article  PubMed  CAS  Google Scholar 

  • Stow JL, de Almeida JB, Narula N, Holtzman EJ, Ercolani L, Ausiello DA. A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells. J Cell Biol. 1991;114:1113–24.

    Article  PubMed  CAS  Google Scholar 

  • Suki WN, Abramowitz J, Mattera R, Codina J, Birnbaumer L. The human genome encodes at least three non-allellic G proteins with ai-type subunits. FEBS Lett. 1987;220:187–92.

    Article  PubMed  CAS  Google Scholar 

  • Sunahara R, Dessauer C, Gilman AG. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol. 1996;36:461–80.

    Article  PubMed  CAS  Google Scholar 

  • Szentivanyi A, Fishel CW, Talmage DW. Adrenaline mediation of histamine and serotonin hyperglycemia in normal mice and the absence of adrenaline-induced hyperglycemia in pertussis-sensitized mice. J Infect Dis. 1963;113:86–98.

    Article  PubMed  CAS  Google Scholar 

  • Tabachnick II, Gulbenkian A. Adrenergic changes due to pertussis: insulin, glucose and free fatty acids. Eur J Pharmacol. 1969;7:186–95.

    Article  PubMed  CAS  Google Scholar 

  • Tall GG, Gilman AG. Resistance to inhibitors of cholinesterase 8A catalyzes release of Galphai-GTP and nuclear mitotic apparatus protein (NuMA) from NuMA/LGN/Galphai-GDP complexes. Proc Natl Acad Sci USA. 2005;102:16584–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taussig R, Gilman AG. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995;270:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Taussig R, Tang WJ, Hepler JR, Gilman AG. Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem. 1994;269:6093–100.

    PubMed  CAS  Google Scholar 

  • Tedford HW, Zamponi GW. Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev. 2006;58:837–62.

    Article  PubMed  CAS  Google Scholar 

  • Tesmer JJG, Berman DM, Gilman AG, Sprang SR. Structure of RGS4 bound to AlF4 - -activated Gia1: stabilization of the transition state for GTP hydrolysis. Cell. 1997;89:251–61.

    Article  PubMed  CAS  Google Scholar 

  • Thomas CJ, Tall GG, Adhikari A, Sprang SR. Ric-8A catalyzes guanine nucleotide exchange on G alphai1 bound to the GPR/GoLoco exchange inhibitor AGS3. J Biol Chem. 2008;283:23150–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vashlishan AB, Madison JM, Dybbs M, Bai J, Sieburth D, Ch’ng Q, Tavazoie M, Kaplan JM. An RNAi screen identifies genes that regulate GABA synapses. Neuron. 2008;58:346–61.

    Article  PubMed  CAS  Google Scholar 

  • Vellano CP, Maher EM, Hepler JR, Blumer JB. G protein-coupled receptors and resistance to inhibitors of cholinesterase-8A (Ric-8A) both regulate the regulator of G protein signaling 14(RGS14):G{alpha}i1 complex in live cells. J Biol Chem. 2011a;286:38659–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vellano CP, Shu FJ, Ramineni S, Yates CK, Tall GG, Hepler JR. Activation of the regulator of G protein signaling 14-Galphai1-GDP signaling complex is regulated by resistance to inhibitors of cholinesterase-8A. Biochemistry. 2011b;50:752–62.

    Article  PubMed  CAS  Google Scholar 

  • Wall MA, Coleman DE, Lee E, Iñiguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR. The structure of the G protein heterotrimer Gia1β1γ2. Cell. 1995;83:1047–58.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis – roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci. 2009;122:893–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Park S, Bajpayee NS, Nagaoka Y, Boulay G, Birnbaumer L, Jiang M. Augmented glucose-induced insulin release in mice lacking G(o2), but not G(o1) or G(i) proteins. Proc Natl Acad Sci USA. 2011;108:1693–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb CK, McCudden CR, Willard FS, Kimple RJ, Siderovski DP, Oxford GS. D2 dopamine receptor activation of potassium channels is selectively decoupled by Galpha-specific GoLoco motif peptides. J Neurochem. 2005;92:1408–18.

    Article  PubMed  CAS  Google Scholar 

  • Wilkie TM, Kinch L. New roles for G alpha and RGS proteins: communication continues despite pulling sisters apart. Curr Biol. 2005;15:R843–954.

    Article  PubMed  CAS  Google Scholar 

  • Wilson BS, Palade GE, Farquhar MG. Endoplasmic reticulum-through-Golgi transport assay based on O-glycosylation of native glycophorin in permeabilized erythroleukemia cells: role for Gi3. Proc Natl Acad Sci USA. 1993;90:1681–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson BS, Komuro M, Farquhar MG. Cellular variations in heterotrimeric G protein localization and expression in rat pituitary. Endocrinology. 1994;134:233–44.

    Article  PubMed  CAS  Google Scholar 

  • Wiser O, Qian X, Ehlers M, Ja WW, Roberts RW, Reuveny E, Jan YN, Jan LY. Modulation of basal and receptor-induced GIRK potassium channel activity and neuronal excitability by the mammalian PINS homolog LGN. Neuron. 2006;50:561–73.

    Article  PubMed  CAS  Google Scholar 

  • Yajima M, Hosoda K, Kanbayashi Y, Nakamura T, Takahashi I, Ui M. Biological properties of islets-activating protein (IAP) purified from the culture medium of Bordetella pertussis. J Biochem. 1978;83:305–12.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Nagahama M, Itoh H, Hatsuzawa K, Tani K, Tagaya M. Regulation of the golgi structure by the alpha subunits of heterotrimeric G proteins. FEBS Lett. 2000;470:25–8.

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Morin X, Cai Y, Yang X, Chia W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell. 2000;100:399–409.

    Article  PubMed  CAS  Google Scholar 

  • Zhao A, Ohara-Imaizumi M, Brissova M, Benninger RK, Xu Y, Hao Y, Abramowitz J, Boulay G, Powers AC, Piston D, et al. Galphao represses insulin secretion by reducing vesicular docking in pancreatic beta-cells. Diabetes. 2010a;59:2522–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Fang Q, Straub SG, Lindau M, Sharp GW. Noradrenaline inhibits exocytosis via the G protein betagamma subunit and refilling of the readily releasable granule pool via the alpha(i1/2) subunit. J Physiol. 2010b;588:3485–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe B. Blumer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Blumer, J.B., Tall, G.G. (2018). G Protein α i/o/z. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_648

Download citation

Publish with us

Policies and ethics