Skip to main content

TLR5 (Toll-Like Receptor 5)

  • Reference work entry
  • First Online:

Synonyms

TIL3; TLR5; Toll/interleukin-1 receptor-like protein 3; Toll-like receptor 5

Historical Background

Toll-like receptors (TLRs) are innate immune receptors that play an important role during infections and diseases. Upon recognition of specific microbe-associated molecular patterns (MAMPs) or self molecules, TLRs initiate signaling cascade that result in the production of pro-inflammatory cytokines, upregulation of co-stimulatory molecules, and molecules necessary for cross-priming of T-cell-dependent immune responses. TLR5 was first reported in humans (Rock et al. 1998), and its location was mapped on chromosome 1. Later in the year 2000, mouse TLR5 was identified and characterized using gene cloning approach (Sebastiani et al. 2000). Hayashi et al., in 2001, showed that innate immune response to bacterial flagellin is mediated through TLR5 (Hayashi et al. 2001). TLR5 recognizes monomeric form of flagella as its ligand and initiates signaling program leading to the activation...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen-Nissen E, Smith KD, Bonneau R, Strong RK, Aderem A. A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin. J Exp Med. 2007;204(2):393–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atif SM, Uematsu S, Akira S, McSorley SJ. CD103-CD11b+ dendritic cells regulate the sensitivity of CD4 T-cell responses to bacterial flagellin. Mucosal Immunol. 2014;7(1):68–77.

    Article  PubMed  CAS  Google Scholar 

  • Atif SM, Lee SJ, Li LX, Uematsu S, Akira S, Gorjestani S, Lin X, Schweighoffer E, Tybulewicz VL, McSorley SJ. Rapid CD4+ T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9. Eur J Immunol. 2015;45(2):513–24.

    Article  PubMed  CAS  Google Scholar 

  • Burdelya LG, Brackett CM, Kojouharov B, Gitlin II, Leonova KI, Gleiberman AS, Aygun-Sunar S, Veith J, Johnson C, Haderski GJ, Stanhope-Baker P, Allamaneni S, Skitzki J, Zeng M, Martsen E, Medvedev A, Scheblyakov D, Artemicheva NM, Logunov DY, Gintsburg AL, Naroditsky BS, Makarov SS, Gudkov AV. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist. Proc Natl Acad Sci USA. 2013;110(20):E1857–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamberlain ND, Vila OM, Volin MV, Volkov S, Pope RM, Swedler W, Mandelin 2nd AM, Shahrara S. TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-α levels. J Immunol. 2012;189(1):475–83.

    Article  PubMed  CAS  Google Scholar 

  • Cho KA, Ryu SJ, Park JS, Jang IS, Ahn JS, Kim KT, Park SC. Senescent phenotype can be reversed by reduction of caveolin status. J Biol Chem. 2003;278:27789–95.

    Article  PubMed  CAS  Google Scholar 

  • Flores-Langarica A, Bobat S, Marshall JL, Yam-Puc JC, Cook CN, Serre K, Kingsley RA, Flores-Romo L, Uematsu S, Akira S, Henderson IR, Toellner KM, Cunningham AF. Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. Eur J Immunol. 2015;45(8):2299–311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  PubMed  CAS  Google Scholar 

  • Hardenberg G, Yao Y, Piccirillo CA, Levings MK, Steiner TS. Toll-like receptor 5 deficiency protects from wasting disease in a T cell transfer colitis model in T cell receptor-β-deficient mice. Inflamm Bowel Dis. 2012;18(1):85–93.

    Article  PubMed  Google Scholar 

  • Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med. 2003;198(10):1563–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One. 2009;4(6):e5990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–103.

    Article  PubMed  CAS  Google Scholar 

  • Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  PubMed  CAS  Google Scholar 

  • Kaden SA, Kurig S, Vasters K, Hofmann K, Zaenker KS, Schmitz J, Winkels G. Enhanced dendritic cell-induced immune responses mediated by the novel C-type lectin receptor mDCAR1. J Immunol. 2009;183:5069–78.

    Article  PubMed  CAS  Google Scholar 

  • Kassem A, Henning P, Kindlund B, Lindholm C, Lerner UH. TLR5, a novel mediator of innate immunity-induced osteoclastogenesis and bone loss. FASEB J. 2015;29(11):4449–60.

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    Article  CAS  PubMed  Google Scholar 

  • Kim S-j, Chen Z, Chamberlain ND, Essani AB, Volin MV, Asif Amin M, Volkov S, Gravallese EM, Arami S, Swedler W, Lane NE, Mehta A, Sweiss N, Shahrara S. Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in RA and experimental arthritis. J Immunol. 2014;193(8):3902–13.

    Article  PubMed  CAS  Google Scholar 

  • Letran SE, Lee SJ, Atif SM, Flores-Langarica A, Uematsu S, Akira S, et al. TLR5-deficient mice lack basal inflammatory and metabolic defects but exhibit impaired CD4 T cell responses to a flagellated pathogen. J Immunol. 2011a;186(9):5406–12.

    Article  PubMed  CAS  Google Scholar 

  • Letran SE, Lee SJ, Atif SM, Uematsu S, Akira S, McSorley SJ. TLR5 functions as an endocytic receptor to enhance flagellin-specific adaptive immunity. Eur J Immunol. 2011b;41(1):29–38.

    Article  PubMed  CAS  Google Scholar 

  • Lim JS, Nguyen KC, Nguyen CT, Jang IS, Han JM, Fabian C, Lee SE, Rhee JH, Cho KA. Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence. Aging Cell. 2015;14(5):907–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McSorley SJ, Ehst BD, Yu Y, Gewirtz AT. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol. 2002;169(7):3914–9.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell H, Pham OH, Li LX, Atif SM, Lee SJ, Ravesloot MM, Stolfi JL, Nuccio SP, Broz P, Monack DM, Baumler AJ, McSorley SJ. Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of T helper 1 cells. Immunity. 2014;40(2):213–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, Hakimpour P, Gill KP, Nakaya HI, Yarovinsky F, Sartor RB, Gewirtz AT, Pulendran B. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity. 2014;41(3):478–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ. Aging and innate immune cells. J Leukoc Biol. 2004;76(2):291–9.

    Article  PubMed  CAS  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA. 1998;95(2):588–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ, Perales-Puchalt A, Brencicova E, Escovar-Fadul X, Nguyen JM, Cadungog MG, Zhang R, Salatino M, Tchou J, Rabinovich GA, Conejo-Garcia JR. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell. 2015;27(1):27–40.

    Article  PubMed  CAS  Google Scholar 

  • Sampath V, Garland JS, Le M, Patel AL, Konduri GG, Cohen JD, Simpson PM, Hines RN. A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatr Pulmonol. 2012;47(5):460–8.

    Article  PubMed  Google Scholar 

  • Sebastiani G, Leveque G, Larivière L, Laroche L, Skamene E, Gros P, Malo D. Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics. 2000;64(3):230–40.

    Article  PubMed  CAS  Google Scholar 

  • Singh V, Yeoh BS, Carvalho F, Gewirtz AT, Vijay-Kumar M. Proneness of TLR5 deficient mice to develop colitis is microbiota dependent. Gut Microbes. 2015;6(4):279–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanley MA. Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol. 2002;27(7):571–7.

    Article  PubMed  CAS  Google Scholar 

  • Uematsu S, Akira S. Immune responses of TLR5(+) lamina propria dendritic cells in enterobacterial infection. J Gastroenterol. 2009;44(8):803–11.

    Article  PubMed  CAS  Google Scholar 

  • Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002;168(2):554–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I thank Prof. Stephen McSorley and Prof. Sangdun Choi for giving me this wonderful opportunity to contribute this book chapter in the second edition of encyclopedia of signaling molecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh Muhammad Atif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Atif, S.M. (2018). TLR5 (Toll-Like Receptor 5). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_639

Download citation

Publish with us

Policies and ethics