Toll-Like Receptor 3
Synonyms
Historical Background
The innate immune system of mammals is equipped with various kinds of cells, such as macrophages and dendritic cells (DCs), which provides the first line of defense to the host in recognizing various kinds of pathogens. These cells have developed different classes of protein based receptors for recognizing numerous kinds of pathogen associated molecular patterns (PAMPs) (Miggin and O’Neill 2006). These different classes of pathogen recognition receptors (PRRs) includes, Membrane bound PRRs such as Toll-like receptors (TLRs), Receptor kinases, Mannose receptors and Cytoplasmic PRRssuch as Nucleotide oligomerization domain (NOD) receptors, the Retinoic acid inducible gene I (RIG-I)-like receptor (RLR) family, and the recently described AIM2 and DAI cytosolic DNA receptors. All these receptor proteins play a crucial role in “danger” recognition and induction of the innate immune responses against a variety of bacterial and viral...
References
- Bell JK, Askins J, Hall PR, Davies DR, Segal DM. The dsRNA binding site of human Toll-like receptor 3. Proc Natl Acad Sci USA. 2006;103:8792–7.PubMedPubMedCentralCrossRefGoogle Scholar
- Botos I, Liu L, Wang Y, Segal DM, Davies DR. The toll-like receptor 3:dsRNA signaling complex. Biochim Biophys Acta. 2009;1789:667–74.PubMedPubMedCentralCrossRefGoogle Scholar
- Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol. 2006;7:1074–81.PubMedPubMedCentralCrossRefGoogle Scholar
- Cheng YS, Xu F. Anticancer function of polyinosinic-polycytidylic acid. Cancer Biol Ther. 2010;10:1219–23.PubMedPubMedCentralCrossRefGoogle Scholar
- de Bouteiller O, Merck E, Hasan UA, Hubac S, Benguigui B, Trinchieri G, et al. Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J Biol Chem. 2005;280:38133–45.PubMedPubMedCentralCrossRefGoogle Scholar
- Funami K, Matsumoto M, Oshiumi H, Akazawa T, Yamamoto A, Seya T. The cytoplasmic ‘linker region’ in Toll-like receptor 3 controls receptor localization and signaling. Int Immunol. 2004;16:1143–54.PubMedPubMedCentralCrossRefGoogle Scholar
- Gauzzi C, Del Corno M, Gessani S. Dissecting TLR3 signaling in dendritic cells. Immunobiology. 2010;215:713–23.PubMedPubMedCentralCrossRefGoogle Scholar
- Jin B, Sun T, Yu XH, Liu CQ, Yang YX, Lu P, et al. Immunomodulatory effects of dsRNA and its potential as vaccine adjuvant. J Biomed Biotechnol. 2010;2010:690438.PubMedPubMedCentralCrossRefGoogle Scholar
- Johnson AC, Li X, Pearlman E. MyD88 functions as a negative regulator of TLR3/TRIF-induced corneal inflammation by inhibiting activation of c-Jun N-terminal kinase. J Biol Chem. 2008;283:3988–96.PubMedPubMedCentralCrossRefGoogle Scholar
- Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O’Neill LA. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J Immunol. 2009;183:3642–51.PubMedPubMedCentralCrossRefGoogle Scholar
- Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J. 2009;420:1–16.PubMedPubMedCentralCrossRefGoogle Scholar
- Miggin SM, O’Neill LA. New insights into the regulation of TLR signaling. J Leukoc Biol. 2006;80:220–6.PubMedPubMedCentralCrossRefGoogle Scholar
- Nomura N, Nagase T, Miyajima N, Sazuka T, Tanaka A, Sato S, et al. Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1 (supplement). DNA Res. 1994;1:251–62.PubMedPubMedCentralCrossRefGoogle Scholar
- Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature. 2006;439:208–11.PubMedPubMedCentralCrossRefGoogle Scholar
- Sasai M, Tatematsu M, Oshiumi H, Funami K, Matsumoto M, Hatakeyama S, et al. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway. Mol Immunol. 2010;47:1283–91.PubMedPubMedCentralCrossRefGoogle Scholar
- Schröder M, Baran M, Bowie AG. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKe-mediated IRF activation. EMBO J. 2008;27:2147–57.PubMedPubMedCentralCrossRefGoogle Scholar
- Siednienko J, Miggin SM. Expression analysis of the Toll-like receptors in human peripheral blood mononuclear cells. Methods Mol Biol. 2009;517:3–14.PubMedPubMedCentralCrossRefGoogle Scholar
- Siednienko J, Halle A, Nagpal K, Golenbock DT, Miggin SM. TLR3-mediated IFN-beta gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like. Eur J Immunol. 2010;40:3150–60.PubMedPubMedCentralCrossRefGoogle Scholar
- Siednienko J, Gajanayake T, Fitzgerald KA, Moynagh P, Miggin SM. Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-(beta) and RANTES production. J Immunol. 2011;186:2514–22.PubMedPubMedCentralCrossRefGoogle Scholar
- Vercammen E, Staal J, Beyaert R. Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev. 2008;21:13–25.PubMedPubMedCentralCrossRefGoogle Scholar
- Yamamoto M, Takeda K. Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract. 2010;2010:240365.PubMedPubMedCentralCrossRefGoogle Scholar
- Zhou Y, Wang X, Liu M, Hu Q, Song L, Ye L, et al. A critical function of toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages. Immunology. 2010;131:40–9.PubMedPubMedCentralGoogle Scholar