Skip to main content

Recoverin

  • Reference work entry
  • First Online:
  • 301 Accesses

Synonyms

23 kDa photoreceptor cell-specific protein; A-protein; Cancer-associated retinopathy antigen; CAR-antigen; S-modulin

Historical Background

In 1989, P. Philippov’s group from M.V. Lomonosov Moscow State University invented a method for purification of the visual G-protein transducin (Gt) and other G-proteins. The idea of the method was based on the ability of visual rhodopsin to bind and to release transducin in the absence and in the presence of GTP, respectively. For this aim, a column with delipidated visual rhodopsin immobilized on Concanavalin A Sepharose was used. Chromatography of a crude extract of bovine rod outer segments on the column allowed one to obtain a set of transducin subunits with a slight contamination of cGMP-phosphodiesterase. Also, an admixture of an unknown protein with an apparent molecular weight of 26 K was seen on the electrophoregram. The unknown protein attracted the attention of the group since the capability of binding to rhodopsin had been a...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamus G. The role of recoverin in autoimmunity. In: Philippov PP, Koch KW, editors. Neuronal calcium sensor proteins. New York: Nova Science Publishers; 2006. p. 181–99.

    Google Scholar 

  • Ames JB, Lim S. Molecular structure and target recognition of neuronal calcium sensor proteins. Biochim Biophys Acta. 2012;1820:1205–13.

    Article  PubMed  CAS  Google Scholar 

  • Bazhin AV, Savchenko MS, Shifrina ON, Demoura SA, Chikina SY, Jaques G, Kogan EA, Chuchalin AG, Philippov PP. Recoverin as a paraneoplastic antigen in lung cancer: the occurrence of anti-recoverin autoantibodies in sera and recoverin in tumors. Lung Cancer. 2004;44:193–8.

    Article  PubMed  Google Scholar 

  • Bazhin AV, Schadendorf D, Willner N, De Smet C, Heinzelmann A, Tikhomirova NK, Umansky V, Philippov PP, Eichmüller SB. Photoreceptor proteins as cancer-retina antigens. Int J Cancer. 2007;120:1268–76.

    Article  PubMed  CAS  Google Scholar 

  • Bazhin AV, De Smet C, Golovastova MO, Schmidt J, Philippov PP. Aberrant demethylation of the recoverin gene is involved in the aberrant expression of recoverin in cancer cells. Exp Dermatol. 2010;19:1023–5.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci. 2007;8:182–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calvez P, Demers E, Boisselier E, Salesse C. Analysis of the contribution of saturated and polyunsaturated phospholipid monolayers to the binding of proteins. Langmuir. 2011;27:1373–9.

    Article  PubMed  CAS  Google Scholar 

  • Chen CK, Woodruff ML, Chen FS, Chen Y, Cilluffo MC, Tranchina D, Fain GL. Modulation of mouse rod response decay by rhodopsin kinase and recoverin. J Neurosci. 2012;32:15998–6006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen CK, Woodruff ML, Fain GL. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation. J Gen Physiol. 2015;145:213–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Förster JR, Lochnit G, Stöhr H. Proteomic analysis of the membrane palmitoylated protein-4 (MPP4)-associated protein complex in the retina. Exp Eye Res. 2009;88:39–48.

    Article  PubMed  CAS  Google Scholar 

  • Fries R, Reddy PP, Mikhaylova M, Haverkamp S, Wei T, Müller M, Kreutz MR, Koch K-W. Dynamic cellular translocation of caldendrin is facilitated by the Ca2+-myristoyl switch of recoverin. J Neurochem. 2010;113:1150–62.

    PubMed  CAS  Google Scholar 

  • Gorodovikova EN, Philippov PP. The presence of a calcium-sensitive p26-containing complex in bovine retina rod cells. FEBS Lett. 1993;335:277–9.

    Article  PubMed  CAS  Google Scholar 

  • Grigoriev II, Senin II, Tikhomirova NK, Komolov KE, Permyakov SE, Zernii EY, Koch KW, Philippov PP. Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase. Front Mol Neurosci. 2012;5:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Higgins MK, Oprian DD, Schertler GF. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase. J Biol Chem. 2006;281:19426–32.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature. 1993;362:855–7.

    Article  PubMed  CAS  Google Scholar 

  • Makino CL, Dodd RL, Chen J, Burns ME, Roca A, Simon MI, Baylor DA. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J Gen Physiol. 2004;123:729–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Permyakov SE, Cherskaya AM, Wasserman LA, Khokhlova TI, Senin II, Zargarov AA, Zinchenko DV, Zernii EY, Lipkin VM, Philippov PP, Uversky VN, Permyakov EA. Recoverin is a zinc-binding protein. J Proteome Res. 2003;2:51–7.

    Article  PubMed  CAS  Google Scholar 

  • Permyakov SE, Nazipova AA, Denesyuk AI, Bakunts AG, Zinchenko DV, Lipkin VM, Uversky VN, Permyakov EA. Recoverin as a redox-sensitive protein. J Proteome Res. 2007;6:1855–63.

    Article  PubMed  CAS  Google Scholar 

  • Permyakov SE, Zernii EY, Knyazeva EL, Denesyuk AI, Nazipova AA, Kolpakova TV, Zinchenko DV, Philippov PP, Permyakov EA, Senin II. Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association. Amino Acids. 2012;42:1435–42.

    Article  PubMed  CAS  Google Scholar 

  • Philippov PP, Senin II, Koch K-W. Recoverin: a calcium-dependent regulator of the visual transduction. In: Philippov PP, Koch KW, editors. Neuronal calcium sensor proteins. New York: Nova Science Publishers; 2006. p. 139–51.

    Google Scholar 

  • Ranaghan MJ, Kumar RP, Chakrabarti KS, Buosi V, Kern D, Oprian DD. A highly conserved cysteine of neuronal calcium-sensing proteins controls cooperative binding of Ca2+ to recoverin. J Biol Chem. 2013;288:36160–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakurai K, Chen J, Khani SC, Kefalov VJ. Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase. J Biol Chem. 2015;290:9239–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sampath AP, Strissel KJ, Elias R, Arshavsky VY, McGinnis JF, Chen J, Kawamura S, Rieke F, Hurley JB. Recoverin improves rod-mediated vision by enhancing signal transmission in the mouse retina. Neuron. 2005;46:413–20.

    Article  PubMed  CAS  Google Scholar 

  • Senin II, Koch KW, Akhtar M, Philippov PP. Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase. Adv Exp Med Biol. 2002;514:69–99.

    Article  PubMed  CAS  Google Scholar 

  • Senin II, Churumova VA, Philippov PP, Koch K-W. Membrane binding of the neuronal calcium sensor recoverin - modulatory role of the charged carboxy-terminus. BMC Biochem. 2007;8:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strissel KJ, Lishko PV, Trieu LH, Kennedy MJ, Hurley JB, Arshavsky VY. Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem. 2005;280:29250–5.

    Article  PubMed  CAS  Google Scholar 

  • Weiergräber OH, Senin II, Zernii EY, Churumova VA, Kovaleva NA, Nazipova AA, Permyakov SE, Permyakov EA, Philippov PP, Granzin J, Koch K-W. Tuning of a neuronal calcium sensor. J Biol Chem. 2006;281:37594–602.

    Article  PubMed  CAS  Google Scholar 

  • Zernii EY, Komolov KE, Permyakov SE, Kolpakova T, Dell’Orco D, Poetzsch A, Knyazeva KL, Grigoriev II, Permyakov EA, Senin II, Philippov PP, Koch K-W. Involvement of recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase. Biochem J. 2011;435:441–50.

    Article  PubMed  CAS  Google Scholar 

  • Zernii EY, Zinchenko DV, Vladimirov VI, Grigoriev II, Skorikova EE, Baksheeva VE, Lipkin VM, Philippov PP, Senin II. Ca2+-dependent regulatory activity of recoverin in photoreceptor raft structures: the role of caveolin-1. Biol Membr. 2013;30:380–6.

    CAS  Google Scholar 

  • Zernii EY, Nazipova AA, Gancharova OS, Kazakov AS, Serebryakova MV, Zinchenko DV, Tikhomirova NK, Senin II, Philippov PP, Permyakov EA, Permyakov SE. Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions. Free Radic Biol Med. 2015;83:283–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel P. Philippov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Philippov, P.P., Zernii, E.Y. (2018). Recoverin. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_606

Download citation

Publish with us

Policies and ethics