Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Fn14

  • Diego Martin-Sanchez
  • Miguel Fontecha-Barriuso
  • Maria D. Sanchez-Niño
  • Maria C. Izquierdo
  • Alvaro C. Ucero
  • Alberto Ortiz
  • Ana B. Sanz
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_594

Synonyms

Background

Fibroblast growth factor–inducible-14 (Fn14) was described in fibroblasts as an immediate-early response gene to growth factors. Fn14 is a member of the TNF receptor superfamily (TNFRSF), also termed TNFRSF12A. The only ligand for Fn14 is the cytokine TWEAK (Wiley and Winkles 2003), and Fn14 is the only signaling receptor for TWEAK. Both have been targeted therapeutically in humans.

Structure

Phylogenetically Fn14 is much conserved and there is a 90% homology between the mouse and the human protein (Wiley and Winkles 2003). The human Fn14 gene is located at chromosomal position 16p13.3, encodes a type I transmembrane protein of 129 aa that is processed into a mature 102-aa protein, and is the smallest member of the TNFRSF (Wiley and Winkles 2003). The extracellular domain (53-aa) contains a cysteine-rich domain typical of TNFRSF members, required for the interaction with TWEAK (He et al. 2009). Conversely, the Tyr176 residue of...
This is a preview of subscription content, log in to check access.

References

  1. Brown SA, Richards CM, Hanscom HN, Feng SL, Winkles JA. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation. Biochem J. 2003;371:395–403.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Brown SA, Cheng E, Williams MS, Winkles JA. TWEAK-independent Fn14 self-association and NF-κB activation is mediated by the C-terminal region of the Fn14 cytoplasmic domain. PLoS One. 2013;8:e65248.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Burkly LC, Michaelson JS, Hahm K, Jakubowski A, Zheng TS. TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease. Cytokine. 2007;40:1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chen HN, Wang DJ, Ren MY, Wang QL, Sui SJ. TWEAK/Fn14 promotes the proliferation and collagen synthesis of rat cardiac fibroblasts via the NF-кB pathway. Mol Biol Rep. 2012;39:8231–41.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chen S, Liu J, Yang M, Lai W, Ye L, Chen J, Hou X, Ding H, Zhang W, Wu Y, et al. Fn14, a downstream target of the TGF-β signaling pathway, regulates fibroblast activation. PLoS One. 2015;10:e0143802.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cheng H, Xu M, Liu X, Zou X, Zhan N, Xia Y. TWEAK/Fn14 activation induces keratinocyte proliferation under psoriatic inflammation. Exp Dermatol. 2016;25:32–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem. 1997;272:32401–10.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Culp PA, Choi D, Zhang Y, Yin J, Seto P, Ybarra SE, Su M, Sho M, Steinle R, Wong MH, et al. Antibodies to TWEAK receptor inhibit human tumor growth through dual mechanisms. Clin Cancer Res. 2010;16:497–508.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dai L, Gu L, Ding C, Qiu L, Di W. TWEAK promotes ovarian cancer cell metastasis via NF-kappaB pathway activation and VEGF expression. Cancer Lett. 2009;283:159–67.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dhruv H, Loftus JC, Narang P, Petit JL, Fameree M, Burton J, Tchegho G, Chow D, Yin H, Al-Abed Y, et al. Structural basis and targeting of the interaction between fibroblast growth factor-inducible 14 and tumor necrosis factor-like weak inducer of apoptosis. J Biol Chem. 2013;288:32261–76.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Doerner JL, Wen J, Xia Y, Paz KB, Schairer D, Wu L, Chalmers SA, Izmirly P, Michaelson JS, Burkly LC, et al. TWEAK/Fn14 signaling involvement in the pathogenesis of cutaneous disease in the MRL/lpr model of spontaneous lupus. J Invest Dermatol. 2015;135:1986–95.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Doerner J, Chalmers SA, Friedman A, Putterman C. Fn14 deficiency protects lupus-prone mice from histological lupus erythematosus-like skin inflammation induced by ultraviolet light. Exp Dermatol. 2016;25(12):969–76.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dohi T, Kawashima R, Kawamura YI, Otsubo T, Hagiwara T, Amatucci A, Michaelson J, Burkly LC. Pathological activation of canonical nuclear-factor κB by synergy of tumor necrosis factor α and TNF-like weak inducer of apoptosis in mouse acute colitis. Cytokine. 2014;69:14–21.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Enwere EK, Lacasse EC, Adam NJ, Korneluk RG. Role of the TWEAK-Fn14-cIAP1-NF-κB signaling axis in the regulation of myogenesis and muscle homeostasis. Front Immunol. 2014;5:34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gurunathan S, Winkles JA, Ghosh S, Hayden MS. Regulation of fibroblast growth factor-inducible 14 (Fn14) expression levels via ligand-independent lysosomal degradation. J Biol Chem. 2014;289:12976–88.PubMedPubMedCentralCrossRefGoogle Scholar
  16. He F, Dang W, Saito K, Watanabe S, Kobayashi N, Güntert P, Kigawa T, Tanaka A, Muto Y, Yokoyama S. Solution structure of the cysteine-rich domain in Fn14, a member of the tumor necrosis factor receptor superfamily. Protein Sci. 2009;18:650–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hénaut L, Sanchez-Nino MD, Aldamiz-Echevarría Castillo G, Sanz AB, Ortiz A. Targeting local vascular and systemic consequences of inflammation on vascular and cardiac valve calcification. Expert Opin Ther Targets. 2016a;20:89–105.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hénaut L, Sanz AB, Martin-Sanchez D, Carrasco S, Villa-Bellosta R, Aldamiz-Echevarria G, Massy ZA, Sanchez-Nino MD, Ortiz A. TWEAK favors phosphate-induced calcification of vascular smooth muscle cells through canonical and non-canonical activation of NFκB. Cell Death Dis. 2016b;7:e2305.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Huang M, Narita S, Tsuchiya N, Ma Z, Numakura K, Obara T, Tsuruta H, Saito M, Inoue T, Horikawa Y, et al. Overexpression of Fn14 promotes androgen-independent prostate cancer progression through MMP-9 and correlates with poor treatment outcome. Carcinogenesis. 2011;32:1589–96.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Izquierdo MC, Sanz AB, Mezzano S, Blanco J, Carrasco S, Sanchez-Niño MD, Benito-Martín A, Ruiz-Ortega M, Egido J, Ortiz A. TWEAK (tumor necrosis factor-like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney Int. 2012;81:1098–107.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Johnston AJ, Murphy KT, Jenkinson L, Laine D, Emmrich K, Faou P, Weston R, Jayatilleke KM, Schloegel J, Talbo G, et al. Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival. Cell. 2015;162:1365–78.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Justo P, Sanz AB, Sanchez-Niño MD, Winkles JA, Lorz C, Egido J, Ortiz A. Cytokine cooperation in renal tubular cell injury: the role of TWEAK. Kidney Int. 2006;70:1750–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kamijo S, Nakajima A, Kamata K, Kurosawa H, Yagita H, Okumura K. Involvement of TWEAK/Fn14 interaction in the synovial inflammation of RA. Rheumatology (Oxford). 2008;47:442–50.CrossRefGoogle Scholar
  24. Karaca G, Swiderska-Syn M, Xie G, Syn WK, Krüger L, Machado MV, Garman K, Choi SS, Michelotti GA, Burkly LC, et al. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice. PLoS One. 2014;9:e83987.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kwon OH, Park SJ, Kang TW, Kim M, Kim JH, Noh SM, Song KS, Yoo HS, Wang Y, Pocalyko D, et al. Elevated fibroblast growth factor-inducible 14 expression promotes gastric cancer growth via nuclear factor-κB and is associated with poor patient outcome. Cancer Lett. 2012;314:73–81.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA. 2013;110:12024–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Madrigal-Matute J, Fernandez-Laso V, Sastre C, Llamas-Granda P, Egido J, Martin-Ventura JL, Zalba G, Blanco-Colio LM. TWEAK/Fn14 interaction promotes oxidative stress through NADPH oxidase activation in macrophages. Cardiovasc Res. 2015;108:139–47.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Martínez-Aranda A, Hernández V, Guney E, Muixí L, Foj R, Baixeras N, Cuadras D, Moreno V, Urruticoechea A, Gil M, et al. FN14 and GRP94 expression are prognostic/predictive biomarkers of brain metastasis outcome that open up new therapeutic strategies. Oncotarget. 2015;6:44254–73.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Meulendijks D, Lassen UN, Siu LL, Huitema AD, Karanikas V, Mau-Sorensen M, Jonker DJ, Hansen AR, Simcox ME, Schostack KJ, et al. Exposure and tumor Fn14 expression as determinants of pharmacodynamics of the anti-TWEAK monoclonal antibody RG7212 in patients with Fn14-positive solid tumors. Clin Cancer Res. 2016;22:858–67.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Michaelson JS, Burkly LC. Therapeutic targeting of TWEAK/Fnl4 in cancer: exploiting the intrinsic tumor cell killing capacity of the pathway. Results Probl Cell Differ. 2009;49:145–60.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Michaelson JS, Amatucci A, Kelly R, Su L, Garber E, Day ES, Berquist L, Cho S, Li Y, Parr M, et al. Development of an Fn14 agonistic antibody as an anti-tumor agent. MAbs. 2011;3:362–75.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Michaelson JS, Kelly R, Yang L, Zhang X, Wortham K, Joseph IB. The anti-Fn14 antibody BIIB036 inhibits tumor growth in xenografts and patient derived primary tumor models and enhances efficacy of chemotherapeutic agents in multiple xenograft models. Cancer Biol Ther. 2012;13:812–21.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Min HK, Kim SM, Park JS, Byun JK, Lee J, Kwok SK, Park YW, Cho ML, Park SH. Fn14-Fc suppresses germinal center formation and pathogenic B cells in a lupus mouse model via inhibition of the TWEAK/Fn14 pathway. J Transl Med. 2016;14:98.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mittal A, Bhatnagar S, Kumar A, Lach-Trifilieff E, Wauters S, Li H, Makonchuk DY, Glass DJ. The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J Cell Biol. 2010;188:833–49.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Moreno JA, Izquierdo MC, Sanchez-Niño MD, Suárez-Alvarez B, Lopez-Larrea C, Jakubowski A, Blanco J, Ramirez R, Selgas R, Ruiz-Ortega M, et al. The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB. J Am Soc Nephrol. 2011;22:1315–25.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Moreno JA, Sastre C, Madrigal-Matute J, Muñoz-García B, Ortega L, Burkly LC, Egido J, Martín-Ventura JL, Blanco-Colio LM. HMGB1 expression and secretion are increased via TWEAK-Fn14 interaction in atherosclerotic plaques and cultured monocytes. Arterioscler Thromb Vasc Biol. 2013;33:612–20.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Muñoz-García B, Moreno JA, López-Franco O, Sanz AB, Martín-Ventura JL, Blanco J, Jakubowski A, Burkly LC, Ortiz A, Egido J, et al. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) enhances vascular and renal damage induced by hyperlipidemic diet in ApoE-knockout mice. Arterioscler Thromb Vasc Biol. 2009;29:2061–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Novoyatleva T, Diehl F, van Amerongen MJ, Patra C, Ferrazzi F, Bellazzi R, Engel FB. TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res. 2010;85:681–90.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Novoyatleva T, Schymura Y, Janssen W, Strobl F, Swiercz JM, Patra C, Posern G, Wietelmann A, Zheng TS, Schermuly RT, et al. Deletion of Fn14 receptor protects from right heart fibrosis and dysfunction. Basic Res Cardiol. 2013;108:325.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Novoyatleva T, Sajjad A, Pogoryelov D, Patra C, Schermuly RT, Engel FB. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14. FASEB J. 2014;28:2492–503.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ortiz A, Sanz AB, Muñoz García B, Moreno JA, Sánchez Niño MD, Martín-Ventura JL, Egido J, Blanco-Colio LM. Considering TWEAK as a target for therapy in renal and vascular injury. Cytokine Growth Factor Rev. 2009;20:251–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ortiz A, Husi H, Gonzalez-Lafuente L, Valiño-Rivas L, Fresno M, Sanz AB, Mullen W, Albalat A, Mezzano S, Vlahou T, et al. Mitogen-activated protein kinase 14 promotes AKI. J Am Soc Nephrol. 2017;28(3): 823–36.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Purcell JW, Kim HK, Tanlimco SG, Doan M, Fox M, Lambert P, Chao DT, Sho M, Wilson KE, Starling GC, et al. Nuclear factor κB is required for tumor growth inhibition mediated by enavatuzumab (PDL192), a humanized monoclonal antibody to TweakR. Front Immunol. 2014;4:505.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Rayego-Mateos S, Morgado-Pascual JL, Sanz AB, Ramos AM, Eguchi S, Batlle D, Pato J, Keri G, Egido J, Ortiz A, et al. TWEAK transactivation of the epidermal growth factor receptor mediates renal inflammation. J Pathol. 2013;231:480–94.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ruiz-Andres O, Suarez-Alvarez B, Sánchez-Ramos C, Monsalve M, Sanchez-Niño MD, Ruiz-Ortega M, Egido J, Ortiz A, Sanz AB. The inflammatory cytokine TWEAK decreases PGC-1α expression and mitochondrial function in acute kidney injury. Kidney Int. 2016;89(2):399–410.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Sanchez-Niño MD, Poveda J, Sanz AB, Mezzano S, Carrasco S, Fernandez-Fernandez B, Burkly LC, Nair V, Kretzler M, Hodgin JB, et al. Fn14 in podocytes and proteinuric kidney disease. Biochim Biophys Acta. 2013;1832:2232–43.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Sanz AB, Sanchez-Niño MD, Izquierdo MC, Jakubowski A, Justo P, Blanco-Colio LM, Ruiz-Ortega M, Egido J, Ortiz A. Tweak induces proliferation in renal tubular epithelium: a role in uninephrectomy induced renal hyperplasia. J Cell Mol Med. 2009;13:3329–42.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Sanz AB, Sanchez-Niño MD, Carrasco S, Manzarbeitia F, Ruiz-Andres O, Selgas R, Ruiz-Ortega M, Gonzalez-Enguita C, Egido J, Ortiz A. Inflammatory cytokines and survival factors from serum modulate tweak-induced apoptosis in PC-3 prostate cancer cells. PLoS One. 2012;7:e47440.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Sanz AB, Aroeira LS, Bellon T, del Peso G, Jimenez-Heffernan J, Santamaria B, Sanchez-Niño MD, Blanco-Colio LM, Lopez-Cabrera M, Ruiz-Ortega M, et al. TWEAK promotes peritoneal inflammation. PLoS One. 2014a;9:e90399.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Sanz AB, Izquierdo MC, Sanchez-Niño MD, Ucero AC, Egido J, Ruiz-Ortega M, Ramos AM, Putterman C, Ortiz A. TWEAK and the progression of renal disease: clinical translation. Nephrol Dial Transplant. 2014b;29(Suppl 1):i54–62.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Sanz AB, Ruiz-Andres O, Sanchez-Niño MD, Ruiz-Ortega M, Ramos AM, Ortiz A. Out of the TWEAKlight: elucidating the role of Fn14 and TWEAK in acute kidney injury. Semin Nephrol. 2016;36:189–98.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Sharif MN, Campanholle G, Nagiec EE, Wang J, Syed J, O’Neil SP, Zhan Y, Brenneman K, Homer B, Neubert H, et al. Soluble Fn14 is detected and elevated in mouse and human kidney disease. PLoS One. 2016;11:e0155368.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Tajrishi MM, Sato S, Shin J, Zheng TS, Burkly LC, Kumar A. The TWEAK-Fn14 dyad is involved in age-associated pathological changes in skeletal muscle. Biochem Biophys Res Commun. 2014a;446:1219–24.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Tajrishi MM, Shin J, Hetman M, Kumar A. DNA methyltransferase 3a and mitogen-activated protein kinase signaling regulate the expression of fibroblast growth factor-inducible 14 (Fn14) during denervation-induced skeletal muscle atrophy. J Biol Chem. 2014b;289:19985–99.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Tajrishi MM, Zheng TS, Burkly LC, Kumar A. The TWEAK-Fn14 pathway: a potent regulator of skeletal muscle biology in health and disease. Cytokine Growth Factor Rev. 2014c;25:215–25.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Tarín C, Fernández-Laso V, Sastre C, Madrigal-Matute J, Gómez M, Zaragoza C, Egido J, Burkly LC, Martín-Ventura JL, Blanco-Colio LM. Tumor necrosis factor-like weak inducer of apoptosis or Fn14 deficiency reduce elastase perfusion-induced aortic abdominal aneurysm in mice. J Am Heart Assoc. 2014;3(11):pii e000723.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Tirnitz-Parker JE, Viebahn CS, Jakubowski A, Klopcic BR, Olynyk JK, Yeoh GC, Knight B. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology. 2010;52:291–302.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ucero AC, Benito-Martin A, Fuentes-Calvo I, Santamaria B, Blanco J, Lopez-Novoa JM, Ruiz-Ortega M, Egido J, Burkly LC, Martinez-Salgado C, et al. TNF-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras-dependent proliferation of cultured renal fibroblast. Biochim Biophys Acta. 2013a;1832(10):1744–55.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ucero AC, Berzal S, Ocaña-Salceda C, Sancho M, Orzáez M, Messeguer A, Ruiz-Ortega M, Egido J, Vicent MJ, Ortiz A, et al. A polymeric nanomedicine diminishes inflammatory events in renal tubular cells. PLoS One. 2013b;8:e51992.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Valiño-Rivas L, Gonzalez-Lafuente L, Sanz AB, Ruiz-Ortega M, Ortiz A, Sanchez-Niño MD. Non-canonical NFκB activation promotes chemokine expression in podocytes. Sci Rep. 2016;6:28857.PubMedPubMedCentralCrossRefGoogle Scholar
  61. van Kuijk AW, Wijbrandts CA, Vinkenoog M, Zheng TS, Reedquist KA, Tak PP. TWEAK and its receptor Fn14 in the synovium of patients with rheumatoid arthritis compared to psoriatic arthritis and its response to tumour necrosis factor blockade. Ann Rheum Dis. 2010;69:301–4.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wang S, Jiang W, Chen X, Zhang C, Li H, Hou W, Liu Z, McNutt MA, Lu F, Li G. Alpha-fetoprotein acts as a novel signal molecule and mediates transcription of Fn14 in human hepatocellular carcinoma. J Hepatol. 2012;57:322–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Wen J, Xia Y, Stock A, Michaelson JS, Burkly LC, Gulinello M, Putterman C. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J Autoimmun. 2013;43:44–54.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Wen J, Doerner J, Weidenheim K, Xia Y, Stock A, Michaelson JS, Baruch K, Deczkowska A, Gulinello M, Schwartz M, et al. TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. J Autoimmun. 2015;60:40–50.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Whitsett TG, Cheng E, Inge L, Asrani K, Jameson NM, Hostetter G, Weiss GJ, Kingsley CB, Loftus JC, Bremner R, et al. Elevated expression of Fn14 in non-small cell lung cancer correlates with activated EGFR and promotes tumor cell migration and invasion. Am J Pathol. 2012;181:111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Wiley SR, Winkles JA. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev. 2003;14:241–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Wilhelm A, Shepherd EL, Amatucci A, Munir M, Reynolds G, Humphreys E, Resheq Y, Adams DH, Hübscher S, Burkly LC, et al. Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation. J Pathol. 2016;239:109–21.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Winkles JA. The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting. Nat Rev Drug Discov. 2008;7:411–25.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Wisniacki N, Amaravadi L, Galluppi GR, Zheng TS, Zhang R, Kong J, Burkly LC. Safety, tolerability, pharmacokinetics, and pharmacodynamics of anti-TWEAK monoclonal antibody in patients with rheumatoid arthritis. Clin Ther. 2013;35:1137–49.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Wu F, Guo L, Jakubowski A, Su L, Li WC, Bonner-Weir S, Burkly LC. TNF-like weak inducer of apoptosis (TWEAK) promotes beta cell neogenesis from pancreatic ductal epithelium in adult mice. PLoS One. 2013;8:e72132.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Xia Y, Herlitz LC, Gindea S, Wen J, Pawar RD, Misharin A, Perlman H, Wu L, Wu P, Michaelson JS, et al. Deficiency of fibroblast growth factor-inducible 14 (Fn14) preserves the filtration barrier and ameliorates lupus nephritis. J Am Soc Nephrol. 2014;26(5):1053–70.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Yadava RS, Foff EP, Yu Q, Gladman JT, Kim YK, Bhatt KS, Thornton CA, Zheng TS, Mahadevan MS. TWEAK/Fn14, a pathway and novel therapeutic target in myotonic dystrophy. Hum Mol Genet. 2015;24:2035–48.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Yin X, Luistro L, Zhong H, Smith M, Nevins T, Schostack K, Hilton H, Lin TA, Truitt T, Biondi D, et al. RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response. Clin Cancer Res. 2013;19:5686–98.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Zhao Z, Burkly LC, Campbell S, Schwartz N, Molano A, Choudhury A, Eisenberg RA, Michaelson JS, Putterman C. TWEAK/Fn14 interactions are instrumental in the pathogenesis of nephritis in the chronic graft-versus-host model of systemic lupus erythematosus. J Immunol. 2007;179:7949–58.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Zhou H, Ekmekcioglu S, Marks JW, Mohamedali KA, Asrani K, Phillips KK, Brown SA, Cheng E, Weiss MB, Hittelman WN, et al. The TWEAK receptor Fn14 is a therapeutic target in melanoma: immunotoxins targeting Fn14 receptor for malignant melanoma treatment. J Invest Dermatol. 2013a;133:1052–62.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Zhou H, Hittelman WN, Yagita H, Cheung LH, Martin SS, Winkles JA, Rosenblum MG. Antitumor activity of a humanized, bivalent immunotoxin targeting fn14-positive solid tumors. Cancer Res. 2013b;73:4439–50.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Zhou H, Mohamedali KA, Gonzalez-Angulo AM, Cao Y, Migliorini M, Cheung LH, LoBello J, Lei X, Qi Y, Hittelman WN, et al. Development of human serine protease-based therapeutics targeting Fn14 and identification of Fn14 as a new target overexpressed in TNBC. Mol Cancer Ther. 2014;13:2688–705.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Diego Martin-Sanchez
    • 1
  • Miguel Fontecha-Barriuso
    • 1
  • Maria D. Sanchez-Niño
    • 1
  • Maria C. Izquierdo
    • 2
  • Alvaro C. Ucero
    • 3
  • Alberto Ortiz
    • 1
  • Ana B. Sanz
    • 1
  1. 1.IIS-Fundacion Jimenez Diaz and Universidad Autonoma de MadridMadridSpain
  2. 2.Columbia University Medical CenterNew YorkUSA
  3. 3.Spanish National Cancer Research CenterMadridSpain