Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Hisao MasaiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_593


Historical Background

Cdc7 was originally discovered as a temperature-sensitive mutant of budding yeast defective in progression of cell cycle (Hartwell 1973). The growth of cdc7(ts) is arrested immediately before the onset of the S phase at a nonpermissive temperature. Upon return to a permissive temperature, cells resume growth and can complete S phase in the absence of ongoing protein synthesis. This led to the notion that Cdc7 is required for DNA replication at the stage where all other proteins required for DNA synthesis are prepared. Cdc7 was later cloned and was identified as encoding a serine/threonine kinase (Hollingsworth and Sclafani 1990). Dbf4, another cell cycle regulator required at the onset of the S phase, was then shown to encode an activation subunit for Cdc7. An ortholog of Cdc7 was first identified in fission yeast (Hsk1; (Masai et...

This is a preview of subscription content, log in to check access.


  1. Bailis JM, Bernard P, Antonelli R, Allshire RC, Forsburg SL. Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nat Cell Biol. 2003;5:1111–6.PubMedCrossRefGoogle Scholar
  2. Baker SP, Phillips J, Anderson S, Qiu Q, Shabanowitz J, Smith MM, Yates JR 3rd, Hunt DF, Grant PA. Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nat Cell Biol. 2010;12:294–8.Google Scholar
  3. Ballabeni A, Zamponi R, Caprara G, Melixetian M, Bossi S, Masiero L, Helin K. Human CDT1 associates with CDC7 and recruits CDC45 to chromatin during S phase. J Biol Chem. 2009;284:3028–36.PubMedCrossRefGoogle Scholar
  4. Bousset K, Diffley JF. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 1998;12:480–90.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brandão LN, Ferguson R, Santoro I, Jinks-Robertson S, Sclafani RA. The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae. Genetics. 2014;197(4):1111–22.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brott BK, Sokol SY. A vertebrate homolog of the cell cycle regulator Dbf4 is an inhibitor of Wnt signaling required for heart development. Dev Cell. 2005;8:703–15.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bruck I, Kaplan DL. The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J Biol Chem. 2015;290(2):1210–21.PubMedCrossRefGoogle Scholar
  8. Chen YC, Weinreich M. Dbf4 regulates the Cdc5 Polo-like kinase through a distinct non-canonical binding interaction. J Biol Chem. 2010;285(53):41244–54.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cho WH, Lee YJ, Kong SI, Hurwitz J, Lee JK. CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc Natl Acad Sci U S A. 2006;103:11521–6.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell. 2003;11(1):203–13.PubMedCrossRefGoogle Scholar
  11. Day TA, Palle K, Barkley LR, Kakusho N, Zou Y, Tateishi S, Verreault A, Masai H, Vaziri C. Phosphorylated Rad 18 directs DNA Polymerase {eta} to sites of stalled replication. J Cell Biol. 2010;191:953–66.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Deegan TD, Yeeles JT, Diffley JF. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation. EMBO J. 2016;35(9):961–73.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Donaldson AD, Fangman WL, Brewer BJ. Cdc7 is required throughout the yeast S phase to activate replication origins. Genes Dev. 1998;12:491–501.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dowell SJ, Romanowski P, Diffley JF. Interaction of Dbf4, the Cdc7 protein kinase regulatory subunit, with yeast replication origins in vivo. Science. 1994;265:1243–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ferreira MF, Santocanale C, Drury LS, Diffley JF. Dbf4p, an essential S phase-promoting factor, is targeted for degradation by the anaphase-promoting complex. Mol Cell Biol. 2000;20(1):242–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Francis LI, Randell JC, Takara TJ, Uchima L, Bell SP. Incorporation into the prereplicative complex activates the Mcm2-7 helicase for Cdc7-Dbf4 phosphorylation. Genes Dev. 2009;23(5):643–54.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Furuya K, Miyabe I, Tsutsui Y, Paderi F, Kakusho N, Masai H, Niki H, Carr AM. DDK phosphorylates checkpoint clamp component Rad9 and promotes its release from damaged chromatin. Mol Cell. 2010;40:606–18.PubMedCrossRefGoogle Scholar
  18. Gérard A, Koundrioukoff S, Ramillon V, Sergère JC, Mailand N, Quivy JP, Almouzni G. The replication kinase Cdc7-Dbf4 promotes the interaction of the p150 subunit of chromatin assembly factor 1 with proliferating cell nuclear antigen. EMBO Rep. 2006;7:817–23.PubMedPubMedCentralGoogle Scholar
  19. Hardy CF, Dryga O, Seematter S, Pahl PM, Sclafani RA. mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc Natl Acad Sci USA. 1997;94:3151–5.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hartwell LH. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol. 1973;115:966–74.PubMedPubMedCentralGoogle Scholar
  21. Hayano M, Kanoh Y, Matsumoto S, Kakusho N, Masai H. Pre-firing binding of Mrc1 defines the early-firing origins which are selectively hyper-activated upon loss of fork stabilizing factors in fission yeast. Mol Cell Biol. 2011;31:2380–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hayano M, Kanoh Y, Matsumoto S, Shrahige K, Masai H. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012;26:137–50.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol. 2009;11(3):357–62.PubMedCrossRefGoogle Scholar
  24. Hiraga S, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, Brewer BJ, Weinreich M, Raghuraman MK, Donaldson AD. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 2014;28(4):372–83.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hoang ML, Leon RP, Pessoa-Brandao L, Hunt S, Raghuraman MK, Fangman WL, Brewer BJ, Sclafani RA. Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae. Mol Cell Biol. 2007;27:7594–602.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hollingsworth Jr RE, Sclafani RA. DNA metabolism gene CDC7 from yeast encodes a serine (threonine) protein kinase. Proc Natl Acad Sci USA. 1990;87:6272–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hughes S, Elustondo F, Di Fonzo A, Leroux FG, Wong AC, Snijders AP, Matthews SJ, Clherepanov P. Crystal structure of human CDC7 kinase in complex with its activator DBF4. Nat Struct Mol Biol. 2012;19(11):1101–7.PubMedCrossRefGoogle Scholar
  28. Irie T, Asami T, Sawa A, Uno Y, Hanada M, Taniyama C, Funakoshi Y, Masai H, Sawa M. Discovery of novel furanone derivatives as potent Cdc7 kinase inhibitors. Eur J Med Chem. 2017;130:406–18.PubMedCrossRefGoogle Scholar
  29. Ito S, Ishii A, Kakusho N, Taniyama C, Yamazaki S, Sakaue-Sawano A, Miyawaki A, Masai H. Mechanism of cancer cell death induced by depletion of an essential replication regulator. PLoS One. 2012;7:e36372.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ito S, Taniyama C, Arai N, Masai H. Cdc7 as a potential new target for cancer therapy. Drug News Perspect. 2008;21:481–8.PubMedCrossRefGoogle Scholar
  31. Jiang W, Hunter T. Identification and characterization of a human protein kinase related to budding yeast Cdc7p. Proc Natl Acad Sci USA. 1997;94:14320–5.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kakusho N, Taniyama C, Masai H. Identification of stimulators and inhibitors of Cdc7 kinase in vitro. J Biol Chem. 2008;283(28):19211–8.PubMedCrossRefGoogle Scholar
  33. Kim JM, Sato N, Yamada M, Arai K, Masai H. Growth regulation of the expression of mouse cDNA and gene encoding a serine/threonine kinase related to Saccharomyces cerevisiae CDC7 essential for G1/S transition. Structure, chromosomal localization, and expression of mouse gene for S. cerevisiae Cdc7-related kinase. J Biol Chem. 1998;273:23248–57.PubMedCrossRefGoogle Scholar
  34. Kim JM, Nakao K, Nakamura K, Saito I, Katsuki M, Arai K, Masai H. Inactivation of Cdc7 kinase in mouse ES cells results in S-phase arrest and p53-dependent cell death. EMBO J. 2002;21:2168–79.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kim JM, Takemoto N, Arai K, Masai H. Hypomorphic mutation in an essential cell-cycle kinase causes growth retardation and impaired spermatogenesis. EMBO J. 2003;22:5260–72.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kim BJ, Kim SY, Lee H. Identification and characterization of human cdc7 nuclear retention and export sequences in the context of chromatin binding. J Biol Chem. 2007;282:30029–38.PubMedCrossRefGoogle Scholar
  37. Kim JM, Kakusho N, Yamada M, Kanoh Y, Takemoto N, Masai H. Cdc7 kinase mediates Claspin phosphorylation in DNA replication checkpoint. Oncogene. 2008;27:3475–82.PubMedCrossRefGoogle Scholar
  38. Kitamura R, Fukatsu R, Kakusho N, Cho YS, Taniyama C, Yamazaki S, Toh GT, Yanagi K, Arai N, Chang HJ, Masai H. Molecular mechanism of activation of human Cdc7 kinase: bipartite interaction with Dbf4/ASK stimulates ATP binding and substrate recognition. J Biol Chem. 2011;286:23031–43.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kneissl M, Pütter V, Szalay AA, Grummt F. Interaction and assembly of murine pre-replicative complex proteins in yeast and mouse cells. J Mol Biol. 2003;327:111–28.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kumagai H, Sato N, Yamada M, Mahony D, Seghezzi W, Lees E, Arai K, Masai H. A novel growth- and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells. Mol Cell Biol. 1999;19(7):5083–95.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Landis G, Tower J. The Drosophila chiffon gene is required for chorion gene amplification, and is related to the yeast Dbf4 regulator of DNA replication and cell cycle. Development. 1999;126:4281–93.PubMedPubMedCentralGoogle Scholar
  42. Le AH, Mastro TL, Forsburg SL. The C-terminus of S. pombe DDK subunit Dfp1 is required for meiosis-specific transcription and cohesin cleavage. Biol Open. 2013;2(7):728–38.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lai WC, Chang TW, Wu CH, Yang SY, Lee TL, Li WC, Chien T, Cheng YC, Shieh JC. Candida albicans Dbf4-dependent Cdc7 kinase plays a novel role in the inhibition of hyphal development. Sci Rep. 2016;6:33716.Google Scholar
  44. Lei M, Kawasaki Y, Young MR, Kihara M, Sugino A, Tye BK. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 1997;11:3365–74.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Liachko NF, McMillan PJ, Guthrie CR, Bird TD, Leverenz JB, Kraemer BC. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol. 2013;74(1):39–52.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Matthews L, Guarne A. Dbf4: The whole is greater than the sum of its parts. Cell Cycle. 2013;12(8):1180–8.  https://doi.org/10.4161/cc.24416.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lo HC, Wan L, Rosebrock A, Futcher B, Hollingsworth NM. Cdc7-Dbf4 regulates NDT80 transcription as well as reductional segregation during budding yeast meiosis. Mol Biol Cell. 2008;19:4956–67.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature. 2010;467(7314):479–83.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lyons NA, Fonslow BR, Diedrich JK, Yates 3rd JR, Morgan DO. Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nat Struct Mol Biol. 2013;20(2):194–201.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011;30(23):4805–14.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Masai H, Arai K. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol. 2002;190:287–926. Review.PubMedCrossRefGoogle Scholar
  52. Masai H, Miyake T, Arai K. hsk1+, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication. EMBO J. 1995;14:3094–104.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Masai H, Matsui E, You Z, Ishimi Y, Tamai K, Arai K. Human Cdc7-related kinase complex. In vitro phosphorylation of MCM by concerted actions of Cdks and Cdc7 and that of a criticial threonine residue of Cdc7 by Cdks. J Biol Chem. 2000;275:29042–52.PubMedCrossRefGoogle Scholar
  54. Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, Matsumoto S, Kim JM, Ishii A, Tanaka T, Kobayashi T, Tamai K, Ohtani K, Arai K. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J Biol Chem. 2006;281:39249–61.PubMedCrossRefGoogle Scholar
  55. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem. 2010;79:89–130.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Matos J, Lipp JJ, Bogdanova A, Guillot S, Okaz E, Junqueira M, Shevchenko A, Zachariae W. Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell. 2008;135:662–78.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Matsumoto S, Shimmoto M, Kakusho N, Yokoyama M, Kanoh Y, Hayano M, Russell P, Masai H. Hsk1 kinase and Cdc45 regulate replication stress-induced checkpoint responses in fission yeast. Cell Cycle. 2010;9(23):4627–37.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Matsumoto S, Hayano M, Kanoh Y, Masai H. Multiple pathways can bypass the essential role of fission yeast Hsk1 kinase in DNA replication initiation. J Cell Biol. 2011;195:387–401.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Matsumoto S, Kanoh Y, Shimmoto M, Hayano M, Ueda K, Fukatsu R, Kakusho N, Masai H. Checkpoint-Independent Regulation of Origin Firing by Mrc1 through Interaction with Hsk1 Kinase. Mol Cell Biol. 2017;37(7). in press.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Miller CT, Gabrielse C, Chen YC, Weinreich M. Cdc7p-Dbf4p regulates mitotic exit by inhibiting Polo kinase. PLoS Genet. 2009;5(5):e1000498.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Montagnoli A, Moll J, Colotta F. Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin Cancer Res. 2010;16(18):4503–8.PubMedCrossRefGoogle Scholar
  62. Montagnoli A, Tenca P, Sola F, Carpani D, Brotherton D, Albanese C, Santocanale C. Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res. 2004;64:7110–6.PubMedCrossRefGoogle Scholar
  63. Montagnoli A, Valsasina B, Brotherton D, Troiani S, Rainoldi S, Tenca P, Molinari A, Santocanale C. Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem. 2006;281:10281–90.PubMedCrossRefGoogle Scholar
  64. Montagnoli A, Valsasina B, Croci V, Menichincheri M, Rainoldi S, Marchesi V, Tibolla M, Tenca P, Brotherton D, Albanese C, Patton V, Alzani R, Ciavolella A, Sola F, Molinari A, Volpi D, Avanzi N, Fiorentini F, Cattoni M, Healy S, Ballinari D, Pesenti E, Isacchi A, Moll J, Bensimon A, Vanotti E, Santocanale C. A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat Chem Biol. 2008;4:357–65.PubMedCrossRefGoogle Scholar
  65. Murakami H, Keeney S. Temporospatial coordination of meiotic DNA replication and recombination via DDK recruitment to replisomes. Cell. 2014;158(4):861–73.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nakamura T, Nakamura-Kubo M, Nakamura T, Shimoda C. Novel fission yeast Cdc7-Dbf4-like kinase complex required for the initiation and progression of meiotic second division. Mol Cell Biol. 2002;22:309–20.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Natsume T, Müller CA, Katou Y, Retkute R, Gierliński M, Araki H, Blow JJ, Shirahige K, Nieduszynski CA, Tanaka TU. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol Cell. 2013;50(5):661–74.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Njagi GD, Kilbey BJ. Mutagenesis in cdc7 strains of yeast. The fate of premutational lesions induced by ultraviolet light. Mutat Res. 1982a;105(5):313–8.PubMedCrossRefGoogle Scholar
  69. Njagi GD, Kilbey BJ. cdc7-1 a temperature sensitive cell-cycle mutant which interferes with induced mutagenesis in Saccharomyces cerevisiae. Mol Gen Genet. 1982b;186(4):478–81.PubMedCrossRefGoogle Scholar
  70. Ogino K, Takeda T, Matsui E, Iiyama H, Taniyama C, Arai K, Masai H. Bipartite binding of a kinase activator activates Cdc7-related kinase essential for S phase. J Biol Chem. 2001;276:31376–87.PubMedCrossRefGoogle Scholar
  71. Ogino K, Hirota K, Matsumoto S, Takeda T, Ohta K, Arai K, Masai H. Hsk1 kinase is required for induction of meiotic dsDNA breaks without involving checkpoint kinases in fission yeast. Proc Natl Acad Sci USA. 2006;103:8131–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Oshiro G, Owens JC, Shellman Y, Sclafani RA, Li JJ. Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability. Mol Cell Biol. 1999;19(7):4888–96.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Patel PK, Kommajosyula N, Rosebrock A, Bensimon A, Leatherwood J, Bechhoefer J, Rhind N. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol Biol Cell. 2008;19(12):5550–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Peace JM, Ter-Zakarian A, Aparicio OM. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One. 2014;9(5):e98501.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Pessoa-Brandão L, Sclafani RA. CDC7/DBF4 functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae. Genetics. 2004;167:1597–610.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Princz LN, Wild P, Bittmann J, Aguado FJ, Blanco MG, Matos J, Pfander B. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis. EMBO J. 2017.  https://doi.org/10.15252/embj.201694831. pii: e201694831.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rainey MD, Harhen B, Wang GN, Murphy PV, Santocanale C. Cdc7-dependent and -independent phosphorylation of Claspin in the induction of the DNA replication checkpoint. Cell Cycle. 2013;12:1560–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ramer MD, Suman ES, Richter H, Stanger K, Spranger M, Bieberstein N, Duncker BP. Dbf4 and Cdc7 proteins promote DNA replication through interactions with distinct Mcm2-7 protein subunits. J Biol Chem. 2013;288(21):14926–35.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Randell JC, Fan A, Chan C, Francis LI, Heller RC, Galani K, Bell SP. Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell. 2010;40:353–63.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rodriguez-Acebes S, Proctor I, Loddo M, Wollenschlaeger A, Rashid M, Falzon M, Prevost AT, Sainsbury R, Stoeber K, Williams GH. Targeting DNA replication before it starts: Cdc7 as a therapeutic target in p53-mutant breast cancers. Am J Pathol. 2010;177(4):2034–45.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sasanuma H, Hirota K, Fukuda T, Kakusho N, Kugou K, Kawasaki Y, Shibata T, Masai H, Ohta K. Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination. Genes Dev. 2008;22:398–410.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sato N, Arai K, Masai H. Human and Xenopus cDNAs encoding budding yeast Cdc7-related kinases: in vitro phosphorylation of MCM subunits by a putative human homologue of Cdc7. EMBO J. 1997;16:4340–51.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sawa M, Masai H. Drug Design with Cdc7 kinase, a potential novel cancer therapy target. Drug Des Devel Ther. 2009;2:255–64.PubMedPubMedCentralGoogle Scholar
  84. Schild D, Byers B. Meiotic effects of DNA-defective cell division cycle mutations of Saccharomyces cerevisiae. Chromosoma. 1978;70(1):109–30.PubMedCrossRefGoogle Scholar
  85. Sheu YJ, Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell. 2006;24:101–13.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sheu YJ, Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature. 2010;463:113–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Shimada K, Pasero P, Gasser SM. ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev. 2002;16(24):3236–52.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Shimmoto S, Matsumoto S, Hayano M, Yokoyama M, Noguchi E, Russell P, Masai H. Interactions between Swi1-Swi3, Mrc1 and S phase kinase, Hsk1 may regulate cellular responses to stalled replication forks in fission yeast. Genes Cells. 2009;14:669–82.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Snaith HA, Brown GW, Forsburg SL. Schizosaccharomyces pombe Hsk1p is a potential cds1p target required for genome integrity. Mol Cell Biol. 2000;20(21):7922–32.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Stephenson R, Hosler MR, Gavande NS, Ghosh AK, Weake VM. Characterization of a Drosophila ortholog of the Cdc7 kinase: a role for Cdc7 in endoreplication independent of Chiffon. J Biol Chem. 2015;290(3):1332–47.PubMedCrossRefGoogle Scholar
  91. Swords R, Mahalingam D, O'Dwyer M, Santocanale C, Kelly K, Carew J, Giles F. Cdc7 kinase - a new target for drug development. Eur J Cancer. 2010;46(1):33–40.PubMedCrossRefGoogle Scholar
  92. Takahashi TS, Walter JC. Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes Dev. 2005;19:2295–300.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Takahashi TS, Basu A, Bermudez V, Hurwitz J, Walter JC. Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev. 2008;22:1894–905.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Takayama Y, Toda T. Coupling histone homeostasis to centromere integrity via the ubiquitin-proteasome system. Cell Div. 2010;5:18.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Takeda T, Ogino K, Matsui E, Cho MK, Kumagai H, Miyake T, Arai K, Masai H. A fission yeast gene, him1(+)/dfp1(+), encoding a regulatory subunit for Hsk1 kinase, plays essential roles in S-phase initiation as well as in S-phase checkpoint control and recovery from DNA damage. Mol Cell Biol. 1999;19:5535–47.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Takeda T, Ogino K, Tatebayashi K, Ikeda H, Ki A, Masai H. Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast. Mol Biol Cell. 2001;12:1257–74.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol. 2011;21(24):2055–63.PubMedCrossRefGoogle Scholar
  98. Tenca P, Brotherton D, Montagnoli A, Rainoldi S, Albanese C, Santocanale C. Cdc7 is an active kinase in human cancer cells undergoing replication stress. J Biol Chem. 2007;282(1):208–15.PubMedCrossRefGoogle Scholar
  99. Tercero JA, Longhese MP, Diffley JF. A central role for DNA replication forks in checkpoint activation and response. Mol Cell. 2003;11(5):1323–36.PubMedCrossRefGoogle Scholar
  100. Tsuji T, Lau E, Chiang GG, Jiang W. The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control. Mol Cell. 2008;32(6):862–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tudzarova S, Trotter MW, Wollenschlaeger A, Mulvey C, Godovac-Zimmermann J, Williams GH, Stoeber K. Molecular architecture of the DNA replication origin activation checkpoint. EMBO J. 2010;29:3381–94.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Uno S, Masai H. Efficient expression and purification of human replication fork-stabilizing factor, Claspin, from mammalian cells: DNA-binding activity and novel protein interactions. Genes Cells. 2011;16:842–56.PubMedCrossRefGoogle Scholar
  103. Valentin G, Schwob E, Della SF. Dual role of the Cdc7-regulatory protein Dbf4 during yeast meiosis. J Biol Chem. 2006;281(5):2828–34.PubMedCrossRefGoogle Scholar
  104. Wan L, Niu H, Futcher B, Zhang C, Shokat KM, Boulton SJ, Hollingsworth NM. Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast. Genes Dev. 2008;22:386–97.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Weinreich M, Stillman B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 1999;18(19):5334–46.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wu KZ, Wang GN, Fitzgerald J, Quachthithu H, Rainey MD, Cattaneo A, Bachi A, Santocanale C. DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach. Nucleic Acids Res. 2016;44(18):8786–98.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wu PY, Nurse P. Establishing the program of origin firing during S phase in fission Yeast. Cell. 2009;136(5):852–64.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wu X, Lee H. Human Dbf4/ASK promoter is activated through the Sp1 and MluIcell-cycle box (MCB) transcription elements. Oncogene. 2002;21(51):7786–96.PubMedCrossRefGoogle Scholar
  109. Yamada M, Sato N, Taniyama C, Ohtani K, Arai K, Masai H. A 63-base pair DNA segment containing an Sp1 site but not a canonical E2F site can confer growth-dependent and E2F-mediated transcriptional stimulation of the human ASK gene encoding the regulatory subunit for human Cdc7-related kinase. J Biol Chem. 2002;277(31):27668–81.PubMedCrossRefGoogle Scholar
  110. Yang CC, Suzuki M, Yamakawa S, Uno S, Ishii A, Yamazaki S, Fukatsu R, Fujisawa R, Sakimura K, Tsurimoto T, Masai H. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat Commun. 2016;7:12135.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zegerman P, Diffley JF. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. 2010;467(7314):474–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Genome Dynamics Project, Department of Genome MedicineTokyo Metropolitan Institute of Medical ScienceTokyoJapan