Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

TLR4 (Toll-Like Receptor 4)

  • Jayalakshmi Krishnan
  • Muhammad Ayaz Anwar
  • Sangdun Choi
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_592

Synonyms

Historical Background

Immune responses are necessary to fight the infections incurred by various pathogens such as viruses, bacteria, and parasites in mammals (Kawai and Akira 2006). To sustain a regulated defense response, innate and adaptive immunity must harmonize and overcome the bacterial or viral challenge in which innate immunity precedes adaptive immunity. The innate and adaptive immune responses drastically differ in the type of cells involved, mode and time span of elimination, and in memorizing the specific signatures of the pathogens.

In 1989, Charles Janeway reported that a class of receptors, known as pattern recognition receptors (PRRs), recognize very specific patterns of chemical structures present on the invading pathogens, known as pathogen-associated molecular patterns (Janeway 1989). In 1996, the Hoffman group identified Toll genes, finding that...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF-2015R1A2A2A09001059).

References

  1. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.  https://doi.org/10.1038/nri1391.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aldinucci A, Bonechi E, Manuelli C, Nosi D, Masini E, Passani MB, et al. Histamine regulates actin cytoskeleton in human Toll-like receptor 4-activated monocyte-derived dendritic cells tuning CD4+ T lymphocyte response. J Biol Chem. 2016;291:14803–14.  https://doi.org/10.1074/jbc.M116.720680.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anwar MA, Basith S, Choi S. Negative regulatory approaches to the attenuation of Toll-like receptor signaling. Exp Mol Med. 2013;45:e11.  https://doi.org/10.1038/emm.2013.28.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Avlas O, Bragg A, Fuks A, Nicholson JD, Farkash A, Porat E, et al. TLR4 expression is associated with left ventricular dysfunction in patients undergoing coronary artery bypass surgery. PLoS One. 2015;10:e0120175.  https://doi.org/10.1371/journal.pone.0120175.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123:377–90.  https://doi.org/10.1182/blood-2013-04-495887.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Biragyn A, Coscia M, Nagashima K, Sanford M, Young HA, Olkhanud P. Murine beta-defensin 2 promotes TLR-4/MyD88-mediated and NF-kappaB-dependent atypical death of APCs via activation of TNFR2. J Leukoc Biol. 2008;83:998–1008.  https://doi.org/10.1189/jlb.1007700.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Casella CR, Mitchell TC. Inefficient TLR4/MD-2 heterotetramerization by monophosphoryl lipid A. PLoS One. 2013;8:e62622.  https://doi.org/10.1371/journal.pone.0062622.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cho JS, Kim JA, Park JH, Park IH, Han IH, Lee HM. Toll-like receptor 4-mediated expression of interleukin-32 via the c-Jun N-terminal kinase/protein kinase B/cyclic adenosine monophosphate response element binding protein pathway in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2016;  https://doi.org/10.1002/alr.21792.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chung YH, Kim D. Enhanced TLR4 expression on colon cancer cells after chemotherapy promotes cell survival and epithelial-mesenchymal transition through phosphorylation of GSK3beta. Anticancer Res. 2016;36:3383–94.PubMedPubMedCentralGoogle Scholar
  10. Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M. Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci U S A. 2013;110:11499–504.  https://doi.org/10.1073/pnas.1219852110.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Da Costa CU, Wantia N, Kirschning CJ, Busch DH, Rodriguez N, Wagner H, et al. Heat shock protein 60 from Chlamydia pneumoniae elicits an unusual set of inflammatory responses via Toll-like receptor 2 and 4 in vivo. Eur J Immunol. 2004;34:2874–84.  https://doi.org/10.1002/eji.200425101.CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Nardo D, De Nardo CM, Nguyen T, Hamilton JA, Scholz GM. Signaling crosstalk during sequential TLR4 and TLR9 activation amplifies the inflammatory response of mouse macrophages. J Immunol. 2009;183:8110–8.  https://doi.org/10.4049/jimmunol.0901031.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol. 2010;87:989–99.  https://doi.org/10.1189/jlb.1209775.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fan J, Frey RS, Malik AB. TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. J Clin Invest. 2003;112:1234–43.  https://doi.org/10.1172/JCI18696.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med. 2003;198:1043–55.  https://doi.org/10.1084/jem.20031023.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Flo TH, Ryan L, Latz E, Takeuchi O, Monks BG, Lien E, et al. Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J Biol Chem. 2002;277:35489–95.  https://doi.org/10.1074/jbc.M201366200.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Foit L, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4. Biomaterials. 2016;100:67–75.  https://doi.org/10.1016/j.biomaterials.2016.05.021.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gaikwad S, Naveen C, Agrawal-Rajput R. Toll-like receptor-4 antagonism mediates benefits during neuroinflammation. Neural Regen Res. 2016;11:552–3.  https://doi.org/10.4103/1673-5374.180732.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Nature. 1991;351:355–6.  https://doi.org/10.1038/351355b0.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol. 2002;168:5989–92.  https://doi.org/10.4049/jimmunol.168.12.5989.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hajishengallis G, Lambris JD. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 2010;31:154–63.  https://doi.org/10.1016/j.it.2010.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hodgkinson CP, Laxton RC, Patel K, Ye S. Advanced glycation end-product of low density lipoprotein activates the toll-like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler Thromb Vasc Biol. 2008a;28:2275–81.  https://doi.org/10.1161/ATVBAHA.108.175992.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hodgkinson CP, Patel K, Ye S. Functional Toll-like receptor 4 mutations modulate the response to fibrinogen. Thromb Haemost. 2008b;100:301–7.  https://doi.org/10.1160/TH08-03-0179.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hoffmann JA. The immune response of Drosophila. Nature. 2003;426:33–8.  https://doi.org/10.1038/nature02021.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ishida A, Akita K, Mori Y, Tanida S, Toda M, Inoue M, et al. Negative regulation of Toll-like receptor-4 signaling through the binding of glycosylphosphatidylinositol-anchored glycoprotein, CD14, with the sialic acid-binding lectin, CD33. J Biol Chem. 2014;289:25341–50.  https://doi.org/10.1074/jbc.M113.523480.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jagannathan M, Hasturk H, Liang Y, Shin H, Hetzel JT, Kantarci A, et al. TLR cross-talk specifically regulates cytokine production by B cells from chronic inflammatory disease patients. J Immunol. 2009;183:7461–70.  https://doi.org/10.4049/jimmunol.0901517.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Janeway Jr CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ji Y, Liu J, Wang Z, Liu N. Angiotensin II induces inflammatory response partly via toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells. Cell Physiol Biochem. 2009;23:265–76.  https://doi.org/10.1159/000218173.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13:816–25.  https://doi.org/10.1038/sj.cdd.4401850.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kawasaki K, Gomi K, Kawai Y, Shiozaki M, Nishijima M. Molecular basis for lipopolysaccharide mimetic action of Taxol and flavolipin. J Endotoxin Res. 2003;9:301–7.  https://doi.org/10.1179/096805103225002548.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130:906–17.  https://doi.org/10.1016/j.cell.2007.08.002.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim S, Kim SY, Pribis JP, Lotze M, Mollen KP, Shapiro R, et al. Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14. Mol Med. 2013;19:88–98.  https://doi.org/10.2119/molmed.2012.00306.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kim H, Zhao Q, Zheng H, Li X, Zhang T, Ma X. A novel crosstalk between TLR4- and NOD2-mediated signaling in the regulation of intestinal inflammation. Sci Report. 2015;5:12018.  https://doi.org/10.1038/srep12018.CrossRefGoogle Scholar
  34. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83.  https://doi.org/10.1016/S0092-8674(00)80172-5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu T, Wei Y, Liu G, Shi B, Giovanni S, Peterson JW, et al. A mutated cholera toxin without the ADP-ribosyltransferase activity induces cytokine production and inhibits apoptosis of splenocytes in mice possibly via toll-like receptor-4 signaling. Mol Immunol. 2016a;75:21–7.  https://doi.org/10.1016/j.molimm.2016.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liu YH, Huang D, Li ZJ, Li XH, Wang X, Yang HP, et al. Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation. Genet Mol Res. 2016b;15.  https://doi.org/10.4238/gmr.15027191.
  37. Llitjos JF, Auffray C, Alby-Laurent F, Rousseau C, Merdji H, Bonilla N, et al. Sepsis-induced expansion of granulocytic myeloid-derived suppressor cells promotes tumour growth through Toll-like receptor 4. J Pathol. 2016;239:473–83.  https://doi.org/10.1002/path.4744.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lohmann KL, Vandenplas ML, Barton MH, Bryant CE, Moore JN. The equine TLR4/MD-2 complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides as an agonist. J Endotoxin Res. 2007;13:235–42.  https://doi.org/10.1177/0968051907083193.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maqbool A, Spary EJ, Manfield IW, Ruhmann M, Zuliani-Alvarez L, Gamboa-Esteves FO, et al. Tenascin C upregulates interleukin-6 expression in human cardiac myofibroblasts via toll-like receptor 4. World J Cardiol. 2016;8:340–50.  https://doi.org/10.4330/wjc.v8.i5.340.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7.  https://doi.org/10.1038/41131.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009;15:774–80.  https://doi.org/10.1038/nm.1987.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Miller YI, Viriyakosol S, Binder CJ, Feramisco JR, Kirkland TN, Witztum JL. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem. 2003;278:1561–8.  https://doi.org/10.1074/jbc.M209634200.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7:304ra142.  https://doi.org/10.1126/scitranslmed.aaa3863.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002;3:667–72.  https://doi.org/10.1038/ni809.CrossRefPubMedPubMedCentralGoogle Scholar
  45. O’Callaghan P, Li JP, Lannfelt L, Lindahl U, Zhang X. Microglial heparan sulfate proteoglycans facilitate the cluster-of-differentiation 14 (CD14)/Toll-like receptor 4 (TLR4)-dependent inflammatory response. J Biol Chem. 2015;290:14904–14.  https://doi.org/10.1074/jbc.M114.634337.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ohto U, Yamakawa N, Akashi-Takamura S, Miyake K, Shimizu T. Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I. J Biol Chem. 2012;287:40611–7.  https://doi.org/10.1074/jbc.M112.404608.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2001;276:10229–33.  https://doi.org/10.1074/jbc.M100099200.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med. 2012;18:1279–85.  https://doi.org/10.1038/nm.2851.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rallabhandi P, Phillips RL, Boukhvalova MS, Pletneva LM, Shirey KA, Gioannini TL, et al. Respiratory syncytial virus fusion protein-induced toll-like receptor 4 (TLR4) signaling is inhibited by the TLR4 antagonists Rhodobacter sphaeroides lipopolysaccharide and eritoran (E5564) and requires direct interaction with MD-2. MBio. 2012;3.  https://doi.org/10.1128/mBio.00218-12.
  50. Sandri S, Rodriguez D, Gomes E, Monteiro HP, Russo M, Campa A. Is serum amyloid A an endogenous TLR4 agonist? J Leukoc Biol. 2008;83:1174–80.  https://doi.org/10.1189/jlb.0407203.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest. 2005;115:2223–33.  https://doi.org/10.1172/JCI23755.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11:141–7.  https://doi.org/10.1038/ni.1828.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Smirnova I, Poltorak A, Chan EK, McBride C, Beutler B. Phylogenetic variation and polymorphism at the toll-like receptor 4 locus (TLR4). Genome Biol. 2000;1:RESEARCH002.  https://doi.org/10.1186/gb-2000-1-1-research002.CrossRefGoogle Scholar
  54. Tada H, Nemoto E, Shimauchi H, Watanabe T, Mikami T, Matsumoto T, et al. Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol. 2002;46:503–12.  https://doi.org/10.1111/j.1348-0421.2002.tb02727.x.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.  https://doi.org/10.1016/S1074-7613(00)80119-3.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tramullas M, Finger BC, Dinan TG, Cryan JF. Obesity takes its toll on visceral pain: high-fat diet induces Toll-Like receptor 4-dependent visceral hypersensitivity. PLoS One. 2016;11:e0155367.  https://doi.org/10.1371/journal.pone.0155367.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tukhvatulin AI, Dzharullaeva AS, Tukhvatulina NM, Shcheblyakov DV, Shmarov MM, Dolzhikova IV, et al. Powerful complex immunoadjuvant based on synergistic effect of combined TLR4 and NOD2 activation significantly enhances magnitude of humoral and cellular adaptive immune responses. PLoS One. 2016;11:e0155650.  https://doi.org/10.1371/journal.pone.0155650.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316.  https://doi.org/10.3389/fimmu.2014.00316.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13:1042–9.  https://doi.org/10.1038/nm1638.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Voss OH, Murakami Y, Pena MY, Lee HN, Tian L, Margulies DH, et al. Lipopolysaccharide-induced CD300b receptor binding to Toll-like receptor 4 alters signaling to drive cytokine responses that enhance septic shock. Immunity. 2016;44:1365–78.  https://doi.org/10.1016/j.immuni.2016.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem. 2007;20:947–56.  https://doi.org/10.1159/000110455.CrossRefPubMedGoogle Scholar
  62. Walton KA, Hsieh X, Gharavi N, Wang S, Wang G, Yeh M, et al. Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for Toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein. J Biol Chem. 2003;278:29661–6.  https://doi.org/10.1074/jbc.M300738200.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wang Y, Chen T, Han C, He D, Liu H, An H, et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood. 2007;110:962–71.  https://doi.org/10.1182/blood-2007-01-066027.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang M, Chen Y, Zhang Y, Zhang L, Lu X, Chen Z. Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells. Cell Mol Immunol. 2011;8:265–75.  https://doi.org/10.1038/cmi.2011.1.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wang S, Zhu X, Xiong L, Zhang Y, Ren J. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism. Toxicol Lett. 2016;257:11–22.  https://doi.org/10.1016/j.toxlet.2016.05.024.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yang S, Sugawara S, Monodane T, Nishijima M, Adachi Y, Akashi S, et al. Micrococcus luteus teichuronic acids activate human and murine monocytic cells in a CD14- and toll-like receptor 4-dependent manner. Infect Immun. 2001;69:2025–30.  https://doi.org/10.1128/IAI.69.4.2025-2030.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yang WS, Han NJ, Kim JJ, Lee MJ, Park SK. TNF-alpha Activates high-mobility group box 1 – toll-like receptor 4 signaling pathway in human aortic endothelial cells. Cell Physiol Biochem. 2016;38:2139–51.  https://doi.org/10.1159/000445570.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ye K, Wu Y, Sun Y, Lin J, Xu J. TLR4 siRNA inhibits proliferation and invasion in colorectal cancer cells by downregulating ACAT1 expression. Life Sci. 2016;155:133–9.  https://doi.org/10.1016/j.lfs.2016.05.012.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhou J, An H, Xu H, Liu S, Cao X. Heat shock up-regulates expression of Toll-like receptor-2 and Toll-like receptor-4 in human monocytes via p38 kinase signal pathway. Immunology. 2005;114:522–30.  https://doi.org/10.1111/j.1365-2567.2004.02112.x.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jayalakshmi Krishnan
    • 1
  • Muhammad Ayaz Anwar
    • 2
  • Sangdun Choi
    • 2
  1. 1.Department of Life SciencesCentral University of Tamil NaduThiruvarurIndia
  2. 2.Department of Molecular Science and TechnologyAjou UniversitySuwonKorea