Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Adhesion GPCRs

  • Christiane Kirchhoff
  • Ben Davies
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_526

Synonyms

Historical Background

Among the superfamily of G-protein-coupled receptors, the adhesion GPCRs form the second largest family with 33 members in humans (for review, see Bjarnadottir et al. 2007). They are also the most diverse and complex GPCR family, often encoded by very large genes with numerous introns, and comprising highly diverse and variable N-terminal extracellular regions. Despite a remarkable structural diversity and low sequence homology, hydropathy analysis and biochemical data suggest that the adhesion GPCRs share the structural hallmark of all GPCRs – a heptahelical conformation with extracellular N-terminus and intracellular C-terminus. Approximately 150 distinct orthologues have been identified in the animal kingdom to date. The name adhesion GPCRs emphasizes the presence of multiple motifs in their long extracellular N-termini predicting adhesive properties, such as cadherin-, laminin-, lectin-, epidermal growth factor-, olfactomedin-,...
This is a preview of subscription content, log in to check access.

References

  1. Abe J, Fukuzawa T, Hirose S. Cleavage of Ig-Hepta at a “SEA” module and at a conserved G protein-coupled receptor proteolytic site. J Biol Chem. 2002;277:23391–8.PubMedCrossRefGoogle Scholar
  2. Becker S, Wandel E, Wobus M, Schneider R, Amasheh S, et al. Overexpression of CD97 in intestinal epithelial cells of transgenic mice attenuates colitis by strengthening adherens junctions. PLoS One. 2010;5:e8507.  https://doi.org/10.1371/journal.pone.0008507.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bjarnadottir TK, Fredriksson R, Schiöth HB. The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci. 2007;64:2104–19.PubMedCrossRefGoogle Scholar
  4. Carreira-Barbosa F, Kajita M, Morel V, Wada H, Okamoto H, Martinez Arias A, Fujita Y, Wilson SW, Tada M. Flamingo regulates epiboly and convergence/extension movements through cell cohesive and signalling functions during zebrafish gastrulation. Development. 2009;136:383–92.PubMedCrossRefGoogle Scholar
  5. Chang GW, Stacey M, Kwakkenbos MJ, Hamann J, Gordon S, Lin HH. Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif. FEBS Lett. 2003;547:145–50.PubMedCrossRefGoogle Scholar
  6. Davies B, Baumann C, Kirchhoff C, Ivell R, Nubbemeyer R, Habenicht UF, Theuring F, Gottwald U. Targeted deletion of the epididymal receptor HE6 results in fluid dysregulation and male infertility. Mol Cell Biol. 2004;24:8642–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Davies JQ, Chang GW, Yona S, Gordon S, Stacey M, Lin HH. The role of receptor oligomerization in modulating the expression and function of leukocyte adhesion-G protein-coupled receptors. J Biol Chem. 2007;282:27343–53.PubMedCrossRefGoogle Scholar
  8. Foord SM, Jupe S, Holbrook J. Bioinformatics and type II G-protein-coupled receptors. Biochem Soc Trans. 2002;30:473–9.PubMedCrossRefGoogle Scholar
  9. Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256–72.PubMedCrossRefGoogle Scholar
  10. Fukuzawa T, Hirose S. Multiple processing of Ig-Hepta/GPR116, a G protein-coupled receptor with immunoglobulin (Ig)-like repeats, and generation of EGF2-like fragment. J Biochem. 2006;140:445–52.PubMedCrossRefGoogle Scholar
  11. Gray JX, Haino M, Roth MJ, Maguire JE, Jensen PN, Yarme A, Stetler-Stevenson MA, Siebenlist U, Kelly K. CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J Immunol. 1996;157:5438–47.PubMedPubMedCentralGoogle Scholar
  12. Hamann J, Vogel B, Van Schijndel GM, Van Lier RA. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med. 1996;184:1185–9.PubMedCrossRefGoogle Scholar
  13. Hamann J, Stortelers C, Kiss-Toth E, Vogel B, Eichler W, Van Lier RA. Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur J Immunol. 1998;28:1701–7.PubMedCrossRefGoogle Scholar
  14. Hsiao CC, Cheng KF, Chen HY, Chou YH, Stacey M, Chang GW, Lin HH. Site-specific N-glycosylation regulates the GPS auto-proteolysis of CD97. FEBS Lett. 2009;583:3285–90.PubMedCrossRefGoogle Scholar
  15. Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem. 2008;283:14469–78.PubMedCrossRefGoogle Scholar
  16. Kaur B, Brat DJ, Devi NS, Van Meir EG. Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene. 2005;24:3632–42.PubMedCrossRefGoogle Scholar
  17. Kirchhoff C, Osterhoff C, Samalecos A. HE6/GPR64 adhesion receptor co-localizes with apical and subapical F-actin scaffold in male excurrent duct epithelia. Reproduction. 2008;136:235–45.PubMedCrossRefGoogle Scholar
  18. Koh JT, Kook H, Kee HJ, Seo YW, Jeong BC, Lee JH, Kim MY, Yoon KC, Jung S, Kim KK. Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking alphavbeta5 integrin. Exp Cell Res. 2004;294:172–84.PubMedCrossRefGoogle Scholar
  19. Krasnoperov VG, Bittner MA, Beavis R, Kuang Y, Salnikow KV, Chepurny OG, Little AR, Plotnikov AN, Wu D, Holz RW, Petrenko AG. Alpha-latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron. 1997;18:925–37.PubMedCrossRefGoogle Scholar
  20. Krasnoperov V, Bittner MA, Holz RW, Chepurny O, Petrenko AG. Structural requirements for alpha-latrotoxin binding and alpha-latrotoxin-stimulated secretion. A study with calcium-independent receptor of alpha-latrotoxin (CIRL) deletion mutants. J Biol Chem. 1999;274(6):3590.PubMedCrossRefGoogle Scholar
  21. Krasnoperov V, Lu Y, Buryanovsky L, Neubert TA, Ichtchenko K, Petrenko AG. Post-translational proteolytic processing of the calcium-independent receptor of alpha-latrotoxin (CIRL), a natural chimera of the cell adhesion protein and the G protein-coupled receptor. Role of the G protein-coupled receptor proteolysis site (GPS) motif. J Biol Chem. 2002;277:46518–26.PubMedCrossRefGoogle Scholar
  22. Krasnoperov V, Deyev IE, Serova OV, Xu C, Lu Y, Buryanovsky L, Gabibov AG, Neubert TA, Petrenko AG. Dissociation of the subunits of the calcium-independent receptor of alpha-latrotoxin as a result of two-step proteolysis. Biochemistry. 2009;48:3230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kreienkamp HJ, Soltau M, Richter D, Böckers T. Interaction of G-protein-coupled receptors with synaptic scaffolding proteins. Biochem Soc Trans. 2002;30:464–8.PubMedCrossRefGoogle Scholar
  24. Kwakkenbos MJ, Pouwels W, Matmati M, Stacey M, Lin HH, Gordon S, Van Lier RA, Hamann J. Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J Leukoc Biol. 2005;77:112–9.PubMedCrossRefGoogle Scholar
  25. Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008;7:339–57.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Langenhan T, Prömel S, Mestek L, Esmaeili B, Waller-Evans H, Hennig C, Kohara Y, Avery L, Vakonakis I, Schnabel R, Russ AP. Latrophilin signaling links anterior-posterior tissue polarity and oriented cell divisions in the C. elegans embryo. Dev Cell. 2009;17:494–504.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF, Ushkaryov YA. Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem. 1997;272:21504–8.PubMedCrossRefGoogle Scholar
  28. Lin HH, Stacey M, Saxby C, Knott V, Chaudhry Y, Evans D, Gordon S, McKnight AJ, Handford P, Lea S. Molecular analysis of the epidermal growth factor-like short consensus repeat domain-mediated protein-protein interactions: dissection of the CD97-CD55 complex. J Biol Chem. 2001;276:24160–9.PubMedCrossRefGoogle Scholar
  29. Lin HH, Chang GW, Davies JQ, Stacey M, Harris J, Gordon S. Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem. 2004;279:31823–32.PubMedCrossRefGoogle Scholar
  30. Lin HH, Stacey M, Chang GW, Davies JQ, Gordon S. Method for selecting and enriching cells expressing low affinity ligands for cell surface receptors. BioTechniques. 2005;38:696–8.PubMedCrossRefGoogle Scholar
  31. Little KD, Hemler ME, Stipp CS. Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell. 2004;15:2375–87.PubMedPubMedCentralCrossRefGoogle Scholar
  32. McKnight AJ, Gordon S. EGF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules. Immunol Today. 1996;17:283–7.PubMedCrossRefGoogle Scholar
  33. McKnight AJ, Gordon S. The EGF-TM7 family: unusual structures at the leukocyte surface. J Leukoc Biol. 1998;63:271–80.PubMedCrossRefGoogle Scholar
  34. Michalski N, Michel V, Bahloul A, Lefèvre G, Barral J, Yagi H, Chardenoux S, Weil D, Martin P, Hardelin JP, Sato M, Petit C. Molecular characterization of the ankle-link complex in cochlear hair cells and its role in the hair bundle functioning. J Neurosci. 2007;27:6478–88.PubMedCrossRefGoogle Scholar
  35. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C, Moens CB, Talbot WS. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science. 2009;325:1402–5.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Moriguchi T, Haraguchi K, Ueda N, Okada M, Furuya T, Akiyama T. DREG, a developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage sites. Genes Cells. 2004;9:549–60.PubMedCrossRefGoogle Scholar
  37. Nordström KJ, Lagerström MC, Wallér LM, Fredriksson R, Schiöth HB. The secretin GPCRs descended from the family of adhesion GPCRs. Mol Biol Evol. 2009;26:71–84.PubMedCrossRefGoogle Scholar
  38. Obermann H, Samalecos A, Osterhoff C, Schröder B, Heller R, Kirchhoff C. HE6, a two-subunit heptahelical receptor associated with apical membranes of efferent and epididymal duct epithelia. Mol Reprod Dev. 2003;64:13–26.PubMedCrossRefGoogle Scholar
  39. Oda K, Shiratsuchi T, Nishimori H, Inazawa J, Yoshikawa H, Taketani Y, Nakamura Y, Tokino T. Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BAI1. Cytogenet Cell Genet. 1999;84:75–82.PubMedCrossRefGoogle Scholar
  40. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature. 2007;450:430–4.PubMedCrossRefGoogle Scholar
  41. Rahman MA, Ashton AC, Meunier FA, Davletov BA, Dolly JO, Ushkaryov YA. Norepinephrine exocytosis stimulated by alpha-latrotoxin requires both external and stored Ca2+ and is mediated by latrophilin, G proteins and phospholipase C. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354:379–86.CrossRefGoogle Scholar
  42. Shima Y, Kawaguchi SY, Kosaka K, Nakayama M, Hoshino M, Nabeshima Y, Hirano T, Uemura T. Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neurosci. 2007;10:963–9.PubMedCrossRefGoogle Scholar
  43. Shiratsuchi T, Futamura M, Oda K, Nishimori H, Nakamura Y, Tokino T. Cloning and characterization of BAI-associated protein 1: a PDZ domain-containing protein that interacts with BAI1. Biochem Biophys Res Commun. 1998;247:597–604.PubMedCrossRefGoogle Scholar
  44. Silva JP, Lelianova V, Hopkins C, Volynski KE, Ushkaryov Y. Functional cross-interaction of the fragments produced by the cleavage of distinct adhesion G-protein-coupled receptors. J Biol Chem. 2009a;284:6495–506.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Silva JP, Suckling J, Ushkaryov Y. Penelope’s web: using alpha-latrotoxin to untangle the mysteries of exocytosis. J Neurochem. 2009b;111:275–90.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Stacey M, Lin HH, Gordon S, McKnight AJ. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci. 2000;25:284–9.PubMedCrossRefGoogle Scholar
  47. Stacey M, Lin HH, Hilyard KL, Gordon S, McKnight AJ. Human epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 is a new member of the EGF-TM7 family that recognizes a ligand on human macrophages and activated neutrophils. J Biol Chem. 2001;276:18863–70.PubMedCrossRefGoogle Scholar
  48. Stacey M, Chang GW, Sanos SL, Chittenden LR, Stubbs L, Gordon S, Lin HH. EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B lymphoma cell line A20. J Biol Chem. 2002;277:29283–93.PubMedCrossRefGoogle Scholar
  49. Stacey M, Chang GW, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J, Gordon S, Lin HH. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood. 2003;102:2916–24.PubMedCrossRefGoogle Scholar
  50. Tobaben S, Südhof TC, Stahl B. The G protein-coupled receptor CL1 interacts directly with proteins of the Shank family. J Biol Chem. 2000;275:36204–10.PubMedCrossRefGoogle Scholar
  51. Tobaben S, Südhof TC, Stahl B. Genetic analysis of alpha-latrotoxin receptors reveals functional interdependence of CIRL/latrophilin 1 and neurexin 1 alpha. J Biol Chem. 2002;277:6359–65.PubMedCrossRefGoogle Scholar
  52. Veninga H, Becker S, Hoek RM, Wobus M, Wandel E, van der Kaa J, van der Valk M, de Vos AF, Haase H, Owens B, van der Poll T, van Lier RA, Verbeek JS, Aust G, Hamann J. Analysis of CD97 expression and manipulation: antibody treatment but not gene targeting curtails granulocyte migration. J Immunol. 2008;181:6574–83.PubMedCrossRefGoogle Scholar
  53. Volynski KE, Silva J-P, Lelianova VG, Rahman MA, Hopkins C, Ushkaryov YA. Latrophilin fragments behave as independent proteins that associate and signal on binding of LTXN4C. EMBO J. 2004;23:4423–33.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Wang T, Ward Y, Tian L, Lake R, Guedez L, Stetler-Stevenson WG, Kelly K. CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counter receptors on endothelial cells. Blood. 2005;105:2836–44.PubMedCrossRefGoogle Scholar
  55. Xu L, Begum S, Hearn JD, Hynes RO. GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A. 2006;103:9023–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Yona S, Lin HH, Siu WO, Gordon S, Stacey M. Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci. 2008a;33:491–500.PubMedCrossRefGoogle Scholar
  57. Yona S, Lin HH, Dri P, Davies JQ, Hayhoe RPG, Lewis SM, Heinsbroek SEM, Brown KA, Perretti M, Hamann J, Treacher DF, Gordon S, Stacey M. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J. 2008b;22:741–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Andrology, Clinic for Dermatology and VenereologyUniversity Hospital Hamburg-EppendorfHamburgGermany
  2. 2.Wellcome Trust Centre for Human GeneticsUniversity of Oxford Roosevelt DriveOxfordUK