Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Vav Family

  • Xosé R. Bustelo
  • Mercedes Dosil
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_513

Synonyms

Historical Background

The Vav family is a group of signal transduction proteins that work as phosphorylation-dependent GDP/GTP exchange factors (GEFs) for GTPases of the Rho subfamily as well as adaptor molecules. This family is composed of three members in vertebrates (Vav1, Vav2, and Vav3) and single representatives in invertebrates (known generically as Vav). By contrast, Vav proteins are missing in unicellular organisms and plants. The first member of this family was discovered in Mariano Barbacid’s lab in 1989 due to the spurious stimulation of its transforming activity during transfections of a human tumor-derived genomic DNA in rodent fibroblasts. Since it was the sixth oncogene isolated in that lab, it received the name of the sixth letter of the Hebrew alphabet (Vav). The product encoded by the proto-oncogene was designated as Vav or, taken into consideration its...

This is a preview of subscription content, log in to check access.

References

  1. Abate F, da Silva-Almeida AC, Zairis S, Robles-Valero J, Couronne L, Khiabanian H, et al. Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc Natl Acad Sci USA. 2017;114:764–769.  https://doi.org/10.1073/pnas.1608839114.CrossRefGoogle Scholar
  2. Barreira M, Fabbiano S, Couceiro JR, Torreira E, Martinez-Torrecuadrada JL, Montoya G, et al. The C-terminal SH3 domain contributes to the intramolecular inhibition of Vav family proteins. Sci Signal. 2014;7:ra35.  https://doi.org/10.1126/scisignal.2004993.CrossRefPubMedGoogle Scholar
  3. Boddicker RL, Razidlo GL, Dasari S, Zeng Y, Hu G, Knudson RA, et al. Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T-cell lymphoma. Blood. 2016;128:1234–45.  https://doi.org/10.1182/blood-2016-03-707141.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bustelo XR. Vav2. UCSD Nat Mol Pages. 2008.  https://doi.org/10.1038/mp.a002361.01.CrossRefGoogle Scholar
  5. Bustelo XR. Vav family exchange factors: an integrated regulatory and functional view. Small GTPases. 2014;5:1–12.  https://doi.org/10.4161/21541248.2014.973757.CrossRefGoogle Scholar
  6. Bustelo XR, Barbacid M. Tyrosine phosphorylation of the vav proto-oncogene product in activated B cells. Science (New York, NY). 1992;256:1196–9.CrossRefGoogle Scholar
  7. Bustelo XR, Couceiro JR. Vav3. UCSD Nat Mol Pages. 2008.  https://doi.org/10.1038/mp.a002362.01.CrossRefGoogle Scholar
  8. Bustelo XR, Ledbetter JA, Barbacid M. Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature. 1992;356:68–71.CrossRefPubMedGoogle Scholar
  9. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016;48:607–16.  https://doi.org/10.1038/ng.3564.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang KH, Sanchez-Aguilera A, Shen S, Sengupta A, Madhu MN, Ficker AM, et al. Vav3 collaborates with p190-BCR-ABL in lymphoid progenitor leukemogenesis, proliferation and survival. Blood. 2012;120:800–11.  https://doi.org/10.1182/blood-2011-06-361709. [pii] blood-2011-06-361709.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chrencik JE, Brooun A, Zhang H, Mathews II, Hura GL, Foster SA, et al. Structural basis of guanine nucleotide exchange mediated by the T-cell essential Vav1. J Mol Biol. 2008;380:828–43.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Citterio C, Menacho-Marquez M, Garcia-Escudero R, Larive RM, Barreiro O, Sanchez-Madrid F, et al. The Rho exchange factors Vav2 and Vav3 control a lung metastasis-specific transcriptional program in breast cancer cells. Sci Signal. 2012;5:ra71.CrossRefPubMedGoogle Scholar
  13. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature. 1997;385:169–72.CrossRefPubMedGoogle Scholar
  14. Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47:1304–15.  https://doi.org/10.1038/ng.3415.CrossRefPubMedGoogle Scholar
  15. Martin H, Mali RS, Ma P, Chatterjee A, Ramdas B, Sims E, et al. Pak and Rac GTPases promote oncogenic KIT-induced neoplasms. J Clin Invest. 2013;123:4449–63.  https://doi.org/10.1172/JCI67509. [pii] 67509.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Menacho-Marquez M, Garcia-Escudero R, Ojeda V, Abad A, Delgado P, Costa C, et al. The Rho exchange factors Vav2 and Vav3 favor skin tumor initiation and promotion by engaging extracellular signaling loops. PLoS Biol. 2013;11:e1001615.  https://doi.org/10.1371/journal.pbio.1001615.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Movilla N, Bustelo XR. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol. 1999;19:7870–85.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Rapley J, Tybulewicz VL, Rittinger K. Crucial structural role for the PH and C1 domains of the Vav1 exchange factor. EMBO Rep. 2008;9:655–61.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Schuebel KE, Movilla N, Rosa JL, Bustelo XR. Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J. 1998;17:6608–21.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Yu B, Martins IR, Li P, Amarasinghe GK, Umetani J, Fernandez-Zapico ME, et al. Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1. Cell. 2010;140:246–56.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and Centro de Investigación del CáncerCSIC-University of SalamancaSalamancaSpain