Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

SWI/SNF Chromatin Remodeling Complex

  • Payel SenEmail author
  • Nilanjana Chatterjee
  • Blaine Bartholomew
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_46



Historical Background

There are several large multi-subunit complexes that couple ATP hydrolysis with regulation of the chromatin landscape and are referred to as ATP-dependent chromatin remodelers. These complexes are primarily divided into four major classes based on the domain organization of their catalytic subunit. In this entry we focus on one of those major classes called the SWI/SNF subfamily. The SWI/SNF subfamily of chromatin remodelers are well conserved throughout all eukaryotes and typically the catalytic subunit has at least four signature motifs that are the ATPase, bromo, AT-hook, and HSA domains. The ATPase domain has sequence homology with the two lobes of such ATP-dependent DNA translocases like RecA and Rad54. The DNA translocation activity of SWI/SNF is essential for these complexes to move nucleosomes along DNA. The bromo domain binds to acetylated lysines in histone tails which may modulate the...

This is a preview of subscription content, log in to check access.


  1. Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111(3):381–92.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Angus-Hill ML, et al. A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol Cell. 2001;7(4):741–51.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baetz KK, et al. The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion. Mol Cell Biol. 2004;24(3):1232–44.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barbaric S, Reinke H, Horz W. Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol Cell Biol. 2003;23(10):3468–76.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Batsche E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol. 2006;13(1):22–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Battaglioli E, et al. REST repression of neuronal genes requires components of the hSWI.SNF complex. J Biol Chem. 2002;277(43):41038–45.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bennett CB, et al. Genes required for ionizing radiation resistance in yeast. Nat Genet. 2001;29(4):426–34.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cairns BR, et al. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell. 1999;4(5):715–23.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cao Y, et al. Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol Cell Biol. 1997;17(6):3323–34.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Carey M, Li B, Workman JL. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell. 2006;24(3):481–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chai B, et al. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 2005;19(14):1656–61.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Corey LL, et al. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev. 2003;17(11):1392–401.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell. 1999;97(3):299–311.PubMedPubMedCentralCrossRefGoogle Scholar
  14. de la Serna IL, Carlson KA, Imbalzano AN, Mammalian SWI. SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet. 2001;27(2):187–90.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dey A, et al. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A. 2003;100(15):8758–63.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dhalluin C, et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399(6735):491–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dilworth FJ, et al. ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR In vitro. Mol Cell. 2000;6(5):1049–58.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Du J, et al. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics. 1998;150(3):987–1005.PubMedPubMedCentralGoogle Scholar
  19. Dunaief JL, et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell. 1994;79(1):119–30.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ferreira H, Flaus A, Owen-Hughes T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol. 2007;374(3):563–79.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ford J, et al. A SWI/SNF- and INO80-dependent nucleosome movement at the INO1 promoter. Biochem Biophys Res Commun. 2007;361(4):974–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Francis NJ, Kingston RE, Woodcock CL. Chromatin compaction by a polycomb group protein complex. Science. 2004;306(5701):1574–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gunawardena RW, et al. SWI/SNF activity is required for the repression of deoxyribonucleotide triphosphate metabolic enzymes via the recruitment of mSin3B. J Biol Chem. 2007;282(28):20116–23.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hartwell LH, et al. Genetic control of the cell division cycle in yeast. Science. 1974;183(120):46–51.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hassan AH, Neely KE, Workman JL. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell. 2001;104(6):817–27.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hassan AH, et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell. 2002;111(3):369–79.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hassan AH, Awad S, Prochasson P. The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes. J Biol Chem. 2006;281(26):18126–34.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ho L, et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A. 2009;106(13):5181–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hsiao PW, et al. BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol Cell Biol. 2003;23(17):6210–20.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Huang J, Laurent BC. A Role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms. Cell Cycle. 2004;3(8):973–5.PubMedPubMedCentralGoogle Scholar
  32. Huang J, Hsu JM, Laurent BC. The RSC nucleosome-remodeling complex is required for Cohesin’s association with chromosome arms. Mol Cell. 2004;13(5):739–50.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Huang X, et al. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol. 2008;319(2):258–66.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jacobson RH, et al. Structure and function of a human TAFII250 double bromodomain module. Science. 2000;288(5470):1422–5.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kasten M, et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 2004;23(6):1348–59.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kim SJ, et al. Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol. 2005;25(24):11171–83.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Koyama H, et al. Abundance of the RSC nucleosome-remodeling complex is important for the cells to tolerate DNA damage in Saccharomyces cerevisiae. FEBS Lett. 2002;531(2):215–21.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Krebs JE, et al. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell. 2000;102(5):587–98.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kundu S, Horn PJ, Peterson CL. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev. 2007;21(8):997–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lavigne M, et al. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet. 2009;5(12):e1000769.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lessard J, et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007;55(2):201–15.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lickert H, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432(7013):107–12.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lorch Y, Zhang M, Kornberg RD. RSC unravels the nucleosome. Mol Cell. 2001;7(1):89–95.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Malone EA, et al. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol Cell Biol. 1991;11(11):5710–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Martens JA, Winston F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev. 2003;13(2):136–42.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Medina PP, Sanchez-Cespedes M. Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics. 2008;3(2):64–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Monahan BJ, et al. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol. 2008;15(8):873–80.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Moreira JM, Holmberg S. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. EMBO J. 1999;18(10):2836–44.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Moshkin YM, et al. Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev. 2002;16(20):2621–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Moshkin YM, et al. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol Cell Biol. 2007;27(2):651–61.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Neely KE, et al. Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol. 2002;22(6):1615–25.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ng HH, et al. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev. 2002;16(7):806–19.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Nielsen AL, et al. Selective interaction between the chromatin-remodeling factor BRG1 and the heterochromatin-associated protein HP1alpha. EMBO J. 2002;21(21):5797–806.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999;63(2):349–404.PubMedPubMedCentralGoogle Scholar
  55. Park YJ, Luger K. Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol. 2008;18(3):282–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Parnell TJ, Huff JT, Cairns BR. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 2008;27(1):100–10.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Peterson CL, Cote J. Cellular machineries for chromosomal DNA repair. Genes Dev. 2004;18(6):602–16.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Peterson S, et al. NAP1 catalyzes the formation of either positive or negative supercoils on DNA on basis of the dimer-tetramer equilibrium of histones H3/H4. Biochemistry. 2007;46(29):8634–46.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Prochasson P, et al. The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Genes Dev. 2005;19(21):2534–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ransom M, et al. FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation. J Biol Chem. 2009;284(35):23461–71.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Reinke H, Horz W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol Cell. 2003;11(6):1599–607.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Reinke H, Gregory PD, Horz W. A transient histone hyperacetylation signal marks nucleosomes for remodeling at the PHO8 promoter in vivo. Mol Cell. 2001;7(3):529–38.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sawada S, et al. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell. 1994;77(6):917–29.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Schwabish MA, Struhl K. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol. 2007;27(20):6987–95.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Shim EY, et al. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol. 2005;25(10):3934–44.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Shivaswamy S, Iyer VR. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol. 2008;28(7):2221–34.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Shogren-Knaak M, et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311(5762):844–7.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Simpson RT, et al. Nucleosome positioning and transcription. Cold Spring Harb Symp Quant Biol. 1993;58:237–45.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Soutoglou E, Talianidis I. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science. 2002;295(5561):1901–4.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Soutourina J, et al. Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol Cell Biol. 2006;26(13):4920–33.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Sudarsanam P, et al. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000;97(7):3364–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Syntichaki P, Topalidou I, Thireos G. The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature. 2000;404(6776):414–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Tomar RS, et al. A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression. Mol Cell Biol. 2009;29(12):3255–65.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Tsuchiya E, et al. The Saccharomyces cerevisiae NPS1 gene, a novel CDC gene which encodes a 160 kDa nuclear protein involved in G2 phase control. EMBO J. 1992;11(11):4017–26.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Tsuchiya E, Hosotani T, Miyakawa T. A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodeling complex RSC, alters the chromatin structure of saccharomyces cerevisiae centromeres. Nucleic Acids Res. 1998;26(13):3286–92.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Underhill C, et al. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem. 2000;275(51):40463–70.PubMedPubMedCentralCrossRefGoogle Scholar
  78. van Attikum H, Fritsch O, Gasser SM. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 2007;26(18):4113–25.PubMedPubMedCentralCrossRefGoogle Scholar
  79. VanDemark AP, et al. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol Cell. 2007;27(5):817–28.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Wan M, et al. Molecular basis of CD4 repression by the Swi/Snf-like BAF chromatin remodeling complex. Eur J Immunol. 2009;39(2):580–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wang Y, et al. Beyond the double helix: writing and reading the histone code. Novartis Found Symp. 2004;259:3–17. discussion 17–21, 163–9.PubMedPubMedCentralGoogle Scholar
  82. Xu F, Zhang K, Grunstein M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell. 2005;121(3):375–85.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Yoo AS, et al. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. 2009;460(7255):642–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Yukawa M, et al. Nps1/Sth1p, a component of an essential chromatin-remodeling complex of Saccharomyces cerevisiae, is required for the maximal expression of early meiotic genes. Genes Cells. 1999;4(2):99–110.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Zhang HS, et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell. 2000;101(1):79–89.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Payel Sen
    • 1
    Email author
  • Nilanjana Chatterjee
    • 1
  • Blaine Bartholomew
    • 1
  1. 1.Department of Biochemistry and Molecular BiologySouthern Illinois University School of MedicineCarbondaleUSA