Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Rosamaria RuggieriEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_425


Historical Background

Sterile-alpha motif and leucine zipper-containing kinase AZK (ZAK) is a protein kinase that belongs to the family of mitogen-activated protein kinase kinase kinases (MAPKKK) with closer homology to the MLK proteins (Gallo and Johnson 2002), with which it shares 40% sequence identity in its kinase domain. It was isolated as ZAK by low-stringent hybridization to the Ste20 kinase (Liu et al. 2000); as MLK7, a gene highly expressed in the heart (Bloem et al. 2001); as MLTK, a gene induced by overexpression of active ERK (Gotoh et al. 2001); and as MRK, a human gene that acts as a MAPKKK in a yeast functional screen (Gross et al. 2002). The ZAK gene encodes two splice variants: ZAKα and ZAKβ of 91.7 kDa and 51.3 kDa calculated molecular mass, respectively (Gross et al. 2002)....
This is a preview of subscription content, log in to check access.


  1. Adler AS, McCleland ML, Yee S, Yaylaoglu M, Hussain S, Cosino E, et al. An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth. Genes Dev. 2014;28(10):1068–84.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bloem LJ, Pickard TR, Acton S, Donoghue M, Beavis RC, Knierman MD, et al. Tissue distribution and functional expression of a cDNA encoding a novel mixed lineage kinase. J Mol Cell Cardiol. 2001;33(9):1739–50.CrossRefPubMedGoogle Scholar
  3. Cariolato L, Cavin S, Diviani D. A-kinase anchoring protein (AKAP)-Lbc anchors a PKN-based signaling complex involved in alpha1-adrenergic receptor-induced p38 activation. J Biol Chem. 2011;286(10):7925–37.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Cheng YC, Kuo WW, Wu HC, Lai TY, Wu CH, Hwang JM, et al. ZAK induces MMP-2 activity via JNK/p38 signals and reduces MMP-9 activity by increasing TIMP-1/2 expression in H9c2 cardiomyoblast cells. Mol Cell Biochem. 2009;325(1–2):69–77.CrossRefPubMedGoogle Scholar
  5. Cho YY, Bode AM, Mizuno H, Choi BY, Choi HS, Dong Z. A novel role for mixed-lineage kinase-like mitogen-activated protein triple kinase alpha in neoplastic cell transformation and tumor development. Cancer Res. 2004;64(11):3855–64.CrossRefPubMedGoogle Scholar
  6. Choi HS, Choi BY, Cho YY, Zhu F, Bode AM, Dong Z. Phosphorylation of Ser28 in histone H3 mediated by mixed lineage kinase-like mitogen-activated protein triple kinase alpha. J Biol Chem. 2005;280(14):13545–53.CrossRefPubMedGoogle Scholar
  7. Christe M, Jin N, Wang X, Gould KE, Iversen PW, Yu X, et al. Transgenic mice with cardiac-specific over-expression of MLK7 have increased mortality when exposed to chronic beta-adrenergic stimulation. J Mol Cell Cardiol. 2004;37(3):705–15.CrossRefPubMedGoogle Scholar
  8. Dubauskas Z, Kunishige J, Prieto VG, Jonasch E, Hwu P, Tannir NM. Cutaneous squamous cell carcinoma and inflammation of actinic keratoses associated with sorafenib. Clin Genitourin Cancer. 2009;7(1):20–3.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Eisenberger S, Ackermann K, Voggenreiter G, Sultmann H, Kasperk C, Pyerin W. Metastases and multiple myeloma generate distinct transcriptional footprints in osteocytes in vivo. J Pathol. 2008;214:617–26.CrossRefPubMedGoogle Scholar
  10. Fuller SJ, Osborne SA, Leonard SJ, Hardyman MA, Vaniotis G, Allen BG, et al. Cardiac protein kinases: the cardiomyocyte kinome and differential kinase expression in human failing hearts. Cardiovasc Res. 2015;108(1):87–98.CrossRefPubMedGoogle Scholar
  11. Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol. 2002;3(9):663–72.CrossRefPubMedGoogle Scholar
  12. Gotoh I, Adachi M, Nishida E. Identification and characterization of a novel MAP kinase kinase kinase. MLTK J Biol Chem. 2001;276(6):4276–86.CrossRefPubMedGoogle Scholar
  13. Gross EA, Callow MG, Waldbaum L, Thomas S, Ruggieri R. MRK, a mixed lineage kinase-related molecule that plays a role in gamma-radiation-induced cell cycle arrest. J Biol Chem. 2002;277(16):13873–82.CrossRefPubMedGoogle Scholar
  14. Hsieh YL, Tsai YL, Shibu MA, Su CC, Chung LC, Pai P, et al. ZAK induces cardiomyocyte hypertrophy and brain natriuretic peptide expression via p38/JNK signaling and GATA4/c-Jun transcriptional factor activation. Mol Cell Biochem. 2015;405(1–2):1–9.CrossRefPubMedGoogle Scholar
  15. Huang CY, Chueh PJ, Tseng CT, Liu KY, Tsai HY, Kuo WW, et al. ZAK re-programs atrial natriuretic factor expression and induces hypertrophic growth in H9c2 cardiomyoblast cells. Biochem Biophys Res Commun. 2004a;324:973–80.CrossRefPubMedGoogle Scholar
  16. Huang CY, Kuo WW, Chueh PJ, Tseng CT, Chou MY, Yang JJ. Transforming growth factor-beta induces the expression of ANF and hypertrophic growth in cultured cardiomyoblast cells through ZAK. Biochem Biophys Res Commun. 2004b;324(1):424–31.CrossRefPubMedGoogle Scholar
  17. Jandhyala DM, Ahluwalia A, Obrig T, Thorpe CM. ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. Cell Microbiol. 2008;10(7):1468–77 .Epub 2008 Mar 10CrossRefPubMedGoogle Scholar
  18. Jandhyala DM, Ahluwalia A, Schimmel JJ, Rogers AB, Leong JM, Thorpe CM. Activation of the Classical Mitogen-Activated Protein Kinases Is Part of the Shiga Toxin-Induced Ribotoxic Stress Response and May Contribute to Shiga Toxin-Induced Inflammation. Infect Immun. 2015;84(1):138–48.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Korkina O, Dong Z, Marullo A, Warshaw G, Symons M, Ruggieri R. The MLK Related Kinase (MRK) is a novel RhoC effector that mediates Lysophosphatidic Acid (LPA)-stimulated tumor cell invasion. J Biol Chem. 2013;288(8):5364–73.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Liu TC, Huang CJ, Chu YC, Wei CC, Chou CC, Chou MY, et al. Cloning and expression of ZAK, a mixed lineage kinase-like protein containing a leucine-zipper and a sterile-alpha motif. Biochem Biophys Res Commun. 2000;274(3):811–6.CrossRefPubMedGoogle Scholar
  21. Liu J, McCleland M, Stawiski EW, Gnad F, Mayba O, Haverty PM, et al. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nat Commun. 2014;5:3830–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Mao X, Bravo IG, Cheng H, Alonso A. Multiple independent kinase cascades are targeted by hyperosmotic stress but only one activates stress kinase p38. Exp Cell Res. 2004;292(2):304–11.CrossRefPubMedGoogle Scholar
  23. Markowitz D, Powell C, Tran NL, Berens ME, Ryken TC, Vanan M, et al. Pharmacological inhibition of the protein kinase MRK/ZAK radiosensitizes medulloblastoma. Mol Cancer Ther. 2016;15(8):1799–808.CrossRefPubMedGoogle Scholar
  24. Mathea S, Abdul Azeez KR, Salah E, Tallant C, Wolfreys F, Konietzny R, et al. Structure of the human protein kinase ZAK in complex with vemurafenib. ACS Chem Biol. 2016;11(6):1595–602.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Perez LI, Cariolato L, Maric D, Gillet L, Abriel H, Diviani D. A-kinase anchoring protein Lbc coordinates a p38 activating signaling complex controlling compensatory cardiac hypertrophy. Mol Cell Biol. 2013;33(15):2903–17.CrossRefGoogle Scholar
  26. Rey C, Faustin B, Mahouche I, Ruggieri R, Brulard C, Ichas F, et al. The MAP3K ZAK, a novel modulator of ERK-dependent migration, is upregulated in colorectal cancer. Oncogene. 2016;35(24):3190–200.CrossRefPubMedGoogle Scholar
  27. Sauter KA, Magun EA, Iordanov MS, Magun BE. ZAK is required for doxorubicin, a novel ribotoxic stressor, to induce SAPK activation and apoptosis in HaCaT cells. Cancer Biol Ther. 2010;10(3):258–66.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Spielmann M, Kakar N, Tayebi N, Leettola C, Nurnberg G, Sowada N, et al. Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice. Genome Res. 2016;26(2):183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Su X, Zhu CL, Shi W, Ni LC, Shen JH, Chen J. Transient global cerebral ischemia induces up-regulation of MLTKalpha in hippocampal CA1 neurons. J Mol Histol. 2012;43(2):187–93.CrossRefPubMedGoogle Scholar
  30. Suzuki T, Kusakabe M, Nakayama K, Nishida E. The protein kinase MLTK regulates chondrogenesis by inducing the transcription factor Sox6. Development. 2012;139(16):2988–98.CrossRefPubMedGoogle Scholar
  31. Takahashi M, Gotoh Y, Isagawa T, Nishimura T, Goyama E, Kim HS, et al. Regulation of a mitogen-activated protein kinase kinase kinase, MLTK by PKN. J Biochem (Tokyo). 2003;133(2):181–7.CrossRefGoogle Scholar
  32. Tosti E, Waldbaum L, Warshaw G, Gross EA, Ruggieri R. The stress kinase MRK contributes to regulation of DNA damage checkpoints through a p38gamma-independent pathway. J Biol Chem. 2004;279(46):47652–60.CrossRefPubMedGoogle Scholar
  33. Vin H, Ojeda SS, Ching G, Leung ML, Chitsazzadeh V, Dwyer DW, et al. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. Elife. 2013;2:e00969. doi:10.7554/eLife.00969.:e00969.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Vin H, Ching G, Ojeda SS, Adelmann CH, Chitsazzadeh V, Dwyer DW, et al. Sorafenib suppresses JNK-dependent apoptosis through inhibition of ZAK. Mol Cancer Ther. 2014;13(1):221–9.CrossRefPubMedGoogle Scholar
  35. Wang X, Mader MM, Toth JE, Yu X, Jin N, Campbell RM, et al. Complete inhibition of anisomycin and UV radiation but not cytokine induced JNK and p38 activation by an aryl-substituted dihydropyrrolopyrazole quinoline and mixed lineage kinase 7 small interfering RNA. J Biol Chem. 2005;280(19):19298–305.CrossRefPubMedGoogle Scholar
  36. Wong J, Smith LB, Magun EA, Engstrom T, Kelley-Howard K, Jandhyala DM, et al. Small molecule kinase inhibitors block the ZAK-dependent inflammatory effects of doxorubicin. Cancer Biol Ther. 2013;14(1):56–63.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Xu WH, Zhang JB, Dang Z, Li X, Zhou T, Liu J, et al. Long non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma. Int J Biol Sci. 2014;10(7):664–76.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Yang JJ. Mixed lineage kinase ZAK utilizing MKK7 and not MKK4 to activate the c-Jun N-terminal kinase and playing a role in the cell arrest. Biochem Biophys Res Commun. 2002;297(1):105–10.CrossRefPubMedGoogle Scholar
  39. Yang JJ, Lee YJ, Hung HH, Tseng WP, Tu CC, Lee H, et al. ZAK inhibits human lung cancer cell growth via ERK and JNK activation in an AP-1-dependent manner. Cancer Sci. 2010;101(6):1374–81.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.The Feinstein Institute for Medical ResearchManhassetUSA