Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Simon Kaja
  • Andrew J. Payne
  • Stephanie L. Grillo
  • Peter KoulenEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_372


 Cupidin;  Vesl

Historical Background

Vesl/Homer proteins are a family of scaffolding molecules, encoded by three genes (Homer-1, Homer-2, and Homer-3) that are abundantly expressed in a variety of tissues, including the brain, retina, cardiac muscle, skeletal muscle, smooth muscle, liver, kidneys, spleen, testis, thymus, placenta, and intestine. Their primary function is to cluster proteins and modulate their activity. Despite their system-wide expression, Homer proteins are best characterized in the brain and the central nervous system, where their primary role is to cluster and modulate the function of synaptic proteins.

Molecular Determinants of Vesl/Homer Proteins

In mammals, Vesl/Homer proteins are encoded by three genes, Homer-1, Homer-2, and Homer-3, that give rise to at least 22 splice variants. Homer-1a and Ania-3 are short isoforms encoded by the Homer-1 gene (Sgambato-Faure et al. 2006; Duncan et al. 2005). Both splice variants were originally identified after...

This is a preview of subscription content, log in to check access.



This chapter is part of the Encyclopedia of Signaling Molecules, 2nd Edition and is based on a chapter of the same name previously published in the first edition of Encyclopedia of Signaling Molecules. This study was supported in part by grants EY014227 and EY022774 from NIH/NEI; RR022570 and RR027093 from NIH/NCRR and NIH/NIGMS; and AG010485, AG022550, and AG027956 from NIH/NIA, by the Felix and Carmen Sabates Missouri Endowed Chair in Vision Research (PK) and the Dr. John P. and Therese E. Mulcahy Endowed Professorship in Ophthalmology (SK). We thank Margaret, Richard, and Sara Koulen for generous support and encouragement.


  1. Bertaso F, Roussignol G, Worley P, Bockaert J, Fagni L, Ango F. Homer 1a-dependent crosstalk between NMDA and metabotropic glutamate receptors in mouse neurons. PLoS ONE. 2010;5:e9755.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Cao L, Tian Y, Jiang Y, Zhang GJ, Lei H, Di ZL. Down-regulation of Homer 1b/c protects against chemically induced seizures through inhibition of mTOR signaling. Cell Physiol Biochem. 2015;35:1633–42. PMID: 25824461.PubMedCrossRefGoogle Scholar
  3. Duncan RS, Hwang SY, Koulen P. Effects of Vesl/Homer proteins on intracellular signaling. Exp Biol Med Maywood. 2005;230:527–35.PubMedCrossRefGoogle Scholar
  4. Duncan RS, Goad DL, Grillo MA, Kaja S, Payne AJ, Koulen P. Control of intracellular calcium signaling as a neuroprotective strategy. Molecules. 2010;15(3):1168–95.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Gutierrez-Mecinas M, Kuehn ED, Abraira VE, Polgár E, Watanabe M, Todd AJ. Immunostaining for Homer reveals the majority of excitatory synapses in laminae I–III of the mouse spinal dorsal horn. Neuroscience. 2016;329:171–81. PMID: 27185486.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM. Metabotropic glutamate. receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease. Brain. 2016;139:526–46. PMID: 26667279.PubMedCrossRefGoogle Scholar
  7. Hayashi MK, Ames HM, Hayashi Y. Tetrameric hub structure of postsynaptic scaffolding protein homer. J Neurosci. 2006;26:8492–501.PubMedCrossRefGoogle Scholar
  8. Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu RM, et al. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell. 2009;137:159–71.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hwang SY, Wei J, Westhoff JH, Duncan RS, Ozawa F, Volpe P, et al. Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling. Cell Calcium. 2003;34:177–84.PubMedCrossRefGoogle Scholar
  10. Kaastrup Müller H, Orlowski D, Reidies Bjarkam C, Wegener G, Elfving B. Potential roles for Homer 1 and Spinophilin in the preventive effect of electroconvulsive seizures on stress-induced CA3c dendritic retraction in the hippocampus. Eur Neuropsychopharmacol. 2015;25:1324–31. PMID: 25935093.PubMedCrossRefGoogle Scholar
  11. Kaja S, Yang SH, Wei J, Fujitani K, Liu R, Brun-Zinkernagel AM, et al. Estrogen protects the inner retina from apoptosis and ischemia-induced loss of Vesl-1 L/Homer 1c immunoreactive synaptic connections. Invest Ophthalmol Vis Sci. 2003;44:3155–62.PubMedCrossRefGoogle Scholar
  12. Kaja S, Sumien N, Borden PK, Khullar N, Iqbal M, Collins JL, Forster MJ, Koulen P. Homer-1a immediate early gene expression correlates with better cognitive performance in aging. Age. 2013;35:1799–808. PMID: 23054826.PubMedCrossRefGoogle Scholar
  13. Kaja S, Naumchuk Ym Grillo SL, Borden PK, Koulen P. Differential up-regulation of Vesl-1/Homer 1 protein isoforms associated with decline in visual performance in a preclinical glaucoma model. Vis Res. 2014;94:16–23. PMID: 24219919.PubMedCrossRefGoogle Scholar
  14. Kammermeier PJ. Endogenous homer proteins regulate metabotropic glutamate receptor signaling in neurons. J Neurosci. 2008;28:8560–7.PubMedCrossRefGoogle Scholar
  15. Lu J, Helton TD, Blanpied TA, Racz B, Newpher TM, Weinberg RJ, et al. Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to Homer. Neuron. 2007;55:874–89.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Mahan AL, Mou L, Shah N, Hu JH, Worley PF, Ressler KJ. Epigenetic modulation of Homer 1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning. J Neurosci. 2012;32:4651–9. PMID: 22457511.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Pouliquin P, Dulhunty AF. Homer and the ryanodine receptor. Eur Biophys J. 2009;39:91–102.PubMedCrossRefGoogle Scholar
  18. Reems J-A, Wang W, Tsubata K, Abdurrahman N, Sundell B, Tijssen MR, et al. Dynamin 3 participates in the growth and development of megakaryocytes. Exp Hematol. 2008;36:1714–27.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Rychkov G, Barritt GJ. TRPC1 Ca(2+)-permeable channels in animal cells. Handb Exp Pharmacol. 2007;179:23–52.CrossRefGoogle Scholar
  20. Sakamoto K, Yoshida S, Ikegami K, Minakami R, Kato A, Udo H, et al. Homer 1c interacts with Hippi and protects striatal neurons from apoptosis. Biochem Biophys Res Commun. 2007;352:1–5.PubMedCrossRefGoogle Scholar
  21. Sgambato-Faure V, Xiong Y, Berke JD, Hyman SE, Strehler EE. The Homer-1 protein Ania-3 interacts with the plasma membrane calcium pump. Biochem Biophys Res Commun. 2006;343:630–7.PubMedCrossRefGoogle Scholar
  22. Shiraishi-Yamaguchi Y, Sato Y, Sakai R, Mizutani A, Knopfel T, Mori N, et al. Interaction of Cupidin/Homer 2 with two actin cytoskeletal regulators, Cdc42 small GTPase and drebrin, in dendritic spines. BMC Neurosci. 2009;10:25.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Stokely M, Hwang S-Y, Hwang J-Y, Fan B, King M, Inokuchi K, Koulen P. Polycystin-1 can interact with Homer 1/Vesl-1 in postnatal hippocampal neurons. J Neurosci Res. 2006;84(8):1727–37.PubMedCrossRefGoogle Scholar
  24. Tanaka M, Duncan RS, McClung N, Yannazzo JA, Hwang SY, Marunouchi T, et al. Homer proteins control neuronal differentiation through IP(3) receptor signaling. FEBS Lett. 2006;580:6145–50.PubMedCrossRefGoogle Scholar
  25. Wang F, Zhang Y, Wang L, Sun P, Luo X, Ishigaki Y, Sugai T, Yamamoto R, Kato N. Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer's disease model mice. Neuropharmacology. 2015;97:210–9. PMID: 26051398.PubMedCrossRefGoogle Scholar
  26. Westhoff JH, Hwang SY, Duncan RS, Ozawa F, Volpe P, Inokuchi K, et al. Vesl/Homer proteins regulate ryanodine receptor type 2 function and intracellular calcium signaling. Cell Calcium. 2003;34:261–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Simon Kaja
    • 1
    • 2
  • Andrew J. Payne
    • 2
  • Stephanie L. Grillo
    • 2
  • Peter Koulen
    • 3
    Email author
  1. 1.Departments of Ophthalmology and Molecular Pharmacology and TherapeuticsLoyola University Chicago, Stritch School of MedicineMaywoodUSA
  2. 2.Vision Research Center, Department of OphthalmologyUniversity of Missouri - Kansas City School of MedicineKansas CityUSA
  3. 3.Department of Ophthalmology and Department of Basic Medical ScienceUniversity of Missouri – Kansas City School of Medicine, Vision Research CenterKansas CityUSA