Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

DHHC Proteins

  • Shinichiro Oku
  • Yuko Fukata
  • Masaki Fukata
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_322

Synonyms

Historical Background

Protein palmitoylation is the first discovered and the most common lipid modification. This posttranslational change involves addition of the saturated 16-carbon palmitate to specific cysteine residues by a labile thioester linkage (Linder and Deschenes 2007). Although reversible palmitoylation was discovered over 30 years ago, the enzymes that add palmitate to proteins (palmitoyl acyl transferases, PATs) and those that cleave the thioester bond (palmitoyl protein thioesterases, PPTs) had been elusive. In 2002, genetic screening in yeast identified proteins that mediate PAT activity. Erf2/4 (Lobo et al. 2002) and Akr1 (Roth et al. 2002) were identified as PATs for yeast Ras2 and Yck2, respectively. Erf2 and Akr1 share a conserved DHHC (Asp-His-His-Cys) cysteine-rich domain (CRD) (Fig. 1) and have four or six transmembrane domains. The DHHC sequence and its surrounding CRD sequence...
This is a preview of subscription content, log in to check access.

References

  1. Degtyarev MY, Spiegela M, Jones TL. Increased palmitoylation of the Gs protein alpha subunit after activation by the beta-adrenergic receptor or cholera toxin. J Biol Chem. 1993;268:23769–72.PubMedGoogle Scholar
  2. Ducker CE, Griffel LK, Smith RA, Keller SN, Zhuang Y, Xia Z, Diller JD, Smith CD. Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol Cancer Ther. 2006;5:1647–59.PubMedPubMedCentralCrossRefGoogle Scholar
  3. El-Husseini A-D, Schnell E, Dakoji S, Sweeney N, Zhou Q, Prange O, Gauthier-Campbell C, Aguilera-Moreno A, Nicoll RA, Bredt DS. Synaptic strength regulated by palmitate cycling on PSD-95. Cell. 2002;108:849–63.CrossRefGoogle Scholar
  4. Fukata Y, Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci. 2010;11:161–75.CrossRefPubMedGoogle Scholar
  5. Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS. Identification of PSD-95 palmitoylating enzymes. Neuron. 2004;44:987–96.CrossRefPubMedGoogle Scholar
  6. Greaves J, Chamberlain LH. DHHC palmitoyl transferases: substrate interactions and (patho)physiology. Trends Biochem Sci. 2011;36:245–53.CrossRefPubMedGoogle Scholar
  7. Huang K, Sanders S, Singaraja R, Orban P, Cijsouw T, Arstikaitis P, Yanai A, Hayden MR, El-Husseini A. Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J. 2009;23:2605–15.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Hundt M, Tabata H, Jeon M-S, Hayashi K, Tanaka Y, Krishna R, De Giorgio L, Liu Y-C, Fukata M, Altman A. Impaired activation and localization of LAT in anergic T cells as a consequence of a selective palmitoylation defect. Immunity. 2006;24:513–22.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Jennings BC, Nadolski MJ, Ling Y, Baker MB, Harrison ML, Deschenes RJ, Linder ME. 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J Lipid Res. 2009;50:233–42.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR, Davis NG, El-Husseini A. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008;456:904–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol. 2007;8:74–84.CrossRefPubMedGoogle Scholar
  12. Lobo S, Greentree WK, Linder ME, Deschenes RJ. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem. 2002;277(43):41268–73.CrossRefPubMedGoogle Scholar
  13. Mitchell DA, Mitchell G, Ling Y, Budde C, Deschenes RJ. Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes. J Biol Chem. 2010;285:38104–14.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Mukai J, Liu H, Burt RA, Swor DE, Lai W-S, Karayiorgou M, Gogos JA. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nature Genet. 2004;36:725–31.CrossRefPubMedGoogle Scholar
  15. Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L, MacDermott AB, Karayiorgou M, Gogos JA. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci. 2008;11:1302–10.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Noritake J, Fukata Y, Iwanaga T, Hosomi N, Tsutsumi R, Matsuda N, Tani H, Iwanari H, Mochizuki Y, Kodama T, Matsuura Y, Bredt DS, Hamakubo T, Fukata M. Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. J Cell Biol. 2009;186:147–60.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Roth AF, Feng Y, Chen L, Davis NG. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J Cell Biol. 2002;159:23–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Singaraja RR, Huang K, Sanders SS, Milnerwood AJ, Hines R, Lerch JP, Franciosi S, Drisdel RC, Vaid K, Young FB, Doty C, Wan J, Bissada N, Henkelman RM, Green WN, Davis NG, Raymond LA, Hayden MR. Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Hum Mol Genet. 2011;20(20):3899–909.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK, Deschenes RJ, Linder ME. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J Biol Chem. 2005;280:31141–8.CrossRefPubMedGoogle Scholar
  20. Wedegaertner PB, Bourne HR. Activation and depalmitoylation of Gs alpha. Cell. 1994;77:1063–70.CrossRefPubMedGoogle Scholar
  21. Yanai A, Huang K, Kang R, Singaraja RR, Arstikaitis P, Gan L, Orban PC, Mullard A, Cowan CM, Raymond LA, Drisdel RC, Green WN, Ravikumar B, Rubinsztein DC, El-Husseini A, Hayden MR. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci. 2006;9:824–31.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Membrane Physiology, Department of Cell PhysiologyNational Institute for Physiological SciencesOkazakiJapan
  2. 2.Department of Physiological Sciences, School of Life ScienceThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan