Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

FZD (Frizzled)

  • Masaru KatohEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_314


Historical Background

Drosophila frizzled (Dfz1) was originally identified as a causative gene for a mutant with disoriented cuticular hairs and was then cloned and characterized as a seven-transmembrane-type protein similar to G protein-coupled receptors (GPCRs) (Vinson and Adler 1987; Lagerström and Schiöth 2008). The phenotype of the Dfz1 mutant was the aberrant polarization of epithelial cells within the epithelial plane or the dysregulation of planar cell polarity (PCP). Drosophila mutants of dishevelled, Van Gogh (Vang or strabismus), prickle, diego, and starry night (flamingo) show phenotypes similar to the Dfz1 mutant. Dfz1, Dishevelled, Vang, Prickle, Diego and Starry night are characterized as core PCP components (Katoh 2005; Wu and...

This is a preview of subscription content, log in to check access.


  1. Bengoa-Vergniory N, Kypta RM. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci. 2015;72:4157–72.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996;382:225–30.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Botta A, Novelli G, Mari A, Novelli A, Sabani M, Korenberg J, et al. Detection of an atypical 7q11.23 deletion in Williams syndrome patients which does not include the STX1A and FZD9 genes. J Med Genet. 1999;36:478–80.PubMedPubMedCentralGoogle Scholar
  4. ClinicalTrials.gov database. US National Institute of Health. https://clinicaltrials.gov. Accessed 28 Aug 2016.
  5. Dawson K, Aflaki M, Nattel S. Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J Physiol. 2013;591:1409–32.PubMedPubMedCentralCrossRefGoogle Scholar
  6. De Marco P, Merello E, Piatelli G, Cama A, Kibar Z, Capra V. Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population. Birth Defects Res A Clin Mol Teratol. 2014;100:633–41.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Dijksterhuis JP, Petersen J, Schulte G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol. 2014;171:1195–209.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Katoh M. WNT/PCP signaling pathway and human cancer. Oncol Rep. 2005;14:1583–8.PubMedPubMedCentralGoogle Scholar
  9. Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13:4042–5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Kirikoshi H, Sagara N, Koike J, Sekihara H, Hirai M, Katoh M. Molecular cloning and characterization of human Frizzled-4 on chromosome 11q14-q21. Biochem Biophys Res Commun. 1999;264:955–61.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387–98.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Koike J, Takagi A, Miwa T, Hirai M, Terada M, Katoh M. Molecular cloning of Frizzled-10, a novel member of the Frizzled gene family. Biochem Biophys Res Commun. 1999;262:39–43.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008;7:339–57.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Liu C, Widen SA, Williamson KA, Ratnapriya R, Gerth-Kahlert C, Rainger J, et al. A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma. Hum Mol Genet. 2016;25:1382–91.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Musada GR, Syed H, Jalali S, Chakrabarti S, Kaur I. Mutation spectrum of the FZD-4, TSPAN12 and ZNF408 genes in Indian FEVR patients. BMC Ophthalmol. 2016;16:90.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Nagayama S, Fukukawa C, Katagiri T, Okamoto T, Aoyama T, Oyaizu N, et al. Therapeutic potential of antibodies against FZD10, a cell-surface protein, for synovial sarcomas. Oncogene. 2005;24:6201–12.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Sagara N, Toda G, Hirai M, Terada M, Katoh M. Molecular cloning, differential expression, and chromosomal localization of human Frizzled-1, Frizzled-2, and Frizzled-7. Biochem Biophys Res Commun. 1998;252:117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Simon EP, Freije CA, Farber BA, Lalazar G, Darcy DG, Honeyman JN, et al. Transcriptomic characterization of fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2015;112:E5916–25.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Swain RK, Katoh M, Medina A, Steinbeisser H. Xenopus frizzled-4 S, a splicing variant of Xfz4, is a context-dependent activator and inhibitor of Wnt/β-catenin signaling. Cell Commun Signal. 2005;3:12.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis. 2008;25:657–63.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Vinson CR, Adler PN. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature. 1987;329:549–51.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Wang Y, Chang H, Rattner A, Nathans J. Frizzled receptors in development and disease. Curr Top Dev Biol. 2016;117:113–39.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Wen S, Zhu H, Lu W, Mitchell LE, Shaw GM, Lammer EJ, et al. Planar cell polarity pathway genes and risk for spina bifida. Am J Med Genet. 2010;152A:299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Wu J, Mlodzik M. A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol. 2009;19:295–305.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Zhang J, Carthew RW. Interactions between Wingless and Dfz2 during Drosophila wing development. Development. 1998;125:3075–85.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Omics NetworkNational Cancer CenterTokyoJapan