Skip to main content

Glutathione-S-Transferases

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

GST; Gsto 1

Historical Background

The Glutathione-S-transferases exist as cytosolic, mitochondrial, and microsomal which can participate in signal transduction by not phosphorylating any factor that is directly involved in which cell growth and death. This signal transduction is considered to be a new way of implication in cell metabolic pathways due to the influence of external, such as xenobiotics and UV radiation, and internal, such as oxidative stress, free radicals, etc., agents. The GST binding assay studies revealed that they participate in the inhibition of various proteins, for example, phosphoproteins, AP-1, JNK, etc., in the systems to regulate cell mechanisms during cell synthesis.

Biomembranes and Signal Transduction

A biomembrane is an enclosing or separating membrane that acts as a selective barrier, within or around a cell. It consists of a lipid bilayer with embedded proteins that may constitute close to 50% of membrane content (Mark Latash 2007). It has a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, et al. Regulation of JNK signaling by GSTp. EMBO J. 1999;18:1321–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beato M, Chavez S, Truss M. Transcriptional regulation by steroid hormones. Steroids. 1996;61(4):240–51.

    Article  PubMed  CAS  Google Scholar 

  • Beuckmann CT, Fujimori K, Urade Y, Hayaishi O. Identification of mu-class glutathione transferases M2-2 and M3-3 as cytosolic prostaglandin E synthases in the human brain. Neurochem Res. 2000;25:733–8.

    Article  PubMed  CAS  Google Scholar 

  • Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, et al. Identification, characterization and crystal structure of the omega class glutathione transferases. J Biol Chem. 2000;275:24798–806.

    Article  PubMed  CAS  Google Scholar 

  • Ciaccio PJ, Tew KD, La Creta FP. Enzymatic conjugation of chlorambucil with glutathione by human glutathione S-transferases and inhibition by ethacrynic acid. Biochem Pharmacol. 1991;42:1504–7.

    Article  PubMed  CAS  Google Scholar 

  • Coles B, Nowell SA, MacLeod SL, Sweeney C, Lang NP, Kadlubar FF. The role of human glutathione S-transferases (hGSTs) in the detoxification of the food-derived carcinogen metabolite N-acetoxy-PhIP, and the effect of a polymorphism in hGSTA1 on colorectal cancer risk. Mutat Res. 2001;482:3–10.

    Article  PubMed  CAS  Google Scholar 

  • Cumming RC, Lightfoot J, Beard K, Youssoufian H, O’Brien PJ, Buchwald M. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat Med. 2001;7(7):814–20.

    Article  PubMed  CAS  Google Scholar 

  • Dang DT, Chen F, Kohli M, Rago C, Cummins JM, Dang LH. Glutathione S-transferase pi1 promotes tumorigenicity in HCT116 human colon cancer cells. Cancer Res. 2005;65:9485–94.

    Article  PubMed  CAS  Google Scholar 

  • Danielson UH, Mannervik B. Kinetic independence of the subunits of cytosolic glutathione transferase from the rat. Biochem J. 1985;231(2):263–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239–52.

    Article  PubMed  CAS  Google Scholar 

  • Divya K, Kamala K, Swamy MV, Thyagaraju K. Glutathione admits enhanced rate of chick embryo lifespan from lipid degenerative stress during incubation. World J Pharm Res. 2014;3(10):1517.

    Google Scholar 

  • Dorion S, Lambert H, Landry J. Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione-S-transferase Mu from Ask1*. J Biol Chem. 2002;277:30792–7.

    Article  PubMed  CAS  Google Scholar 

  • Hammes SR. The further redefining of steroid-mediated signaling. Proc Natl Acad Sci USA. 2003;100(5):2168–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han J, Lee J-D, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994;265:808–11.

    Article  PubMed  CAS  Google Scholar 

  • Hanna MH, Nowicki JJ, Fatone MA. Extracellular cyclic AMP (cAMP) during development of the cellular slime mold Polysphondylium violaceum: comparison of accumulation in the wild type and an aggregation-defective mutant. J Bacteriol. 1984;157(2):345–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88.

    Article  PubMed  CAS  Google Scholar 

  • Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995;80:225–36.

    Article  PubMed  CAS  Google Scholar 

  • Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development. Curr Opin Cell Biol. 1998;10:205–19.

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi T, Bottaro DP, Chan A, Miki T, Aaronson SA. Expression cloning of a human dual-specificity phosphatase. Proc Natl Acad Sci USA. 1992;89:12170–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato Y, Kravchenko VV, Tapping RI, Han J, Ulevitch RJ, Lee JD. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 1997;16:7054–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kistler J, Stroud RM, et al. Structure and function of an acetylcholine receptor. Biophys J. 1982;37(1):371–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latash ML. Neurophysiological basis of movement. Human Kinetics: Champaign; 2007. isbn:978-0736063676.

    Google Scholar 

  • Lawler S, Fleming Y, Goedert M, Cohen P. Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr Biol. 1998;8:1387–90.

    Article  PubMed  CAS  Google Scholar 

  • Lechner C, Zahalka MA, Giot JF, Møller NP, Ullrich A. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci U S A. 1996;93(9):4355–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin X, Tascilar M, Lee WH, Vles WJ, Lee BH, Veeraswamy R, Asgari K, Freije D, van Rees B, Gage WR, Bova GS, Isaacs WB, Brooks JD, DeWeese TL, De Marzo AM, Nelson WG. GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol. 2001;159:1815–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, et al. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA. 1985;82:7202–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLellan RA, Oscarson M, Alexandrie AK, Seidegard J, Evans DA, Rannug A, et al. Characterization of a human glutathione S-transferase mu cluster containing a duplicated GSTM1 gene that causes ultrarapid enzyme activity. Mol Pharmacol. 1997;52:958–65.

    Article  PubMed  CAS  Google Scholar 

  • Musti AM, Treier M, Bohmann D. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science. 1997;275:400–2.

    Article  PubMed  CAS  Google Scholar 

  • New L, Han J. The p38 MAP kinase pathway and its biological function. Trends Cardiovasc Med. 1998;8:220–8.

    Article  PubMed  CAS  Google Scholar 

  • Ramgamaltha S, Tew KD. Immunohistochemical localization of glutathione-S-transferases alpha, mu and pi in normal tissue and carcinomas from human colon. Carcinogenesis. 1991;12:2383–7.

    Article  Google Scholar 

  • Reece J, Campbell N. Biology. San Francisco: Benjamin Cummings; 2002. isbn:978-0-8053-6624-5.

    Google Scholar 

  • Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980;284(5751):17–22.

    Article  PubMed  CAS  Google Scholar 

  • Ruxana Begum SK, Kedam TR. Effect of acrylamide on chick embryo liver GSTs. Med J Nutr Met. 2010;3(1):31–3. Adv Cancer Res. 52:205–55.

    Google Scholar 

  • Schroder K, et al. Interferon-γ an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–89.

    Article  PubMed  CAS  Google Scholar 

  • Silverthorn DU. Human physiology. 4th ed. San Francisco: Benjamin Cumming; 2006.

    Google Scholar 

  • Sprague Jr GF. Signal transduction in yeast mating: receptors, transcription factors, and the kinase connection. Trends Genet. 1991;7(11–12):393–8.

    Article  PubMed  CAS  Google Scholar 

  • Strange RC, Fryer AA. The glutathione S-transferases: influence of polymorphism on cancer susceptibility. IARC Sci Publ. 1999;231–49.

    Google Scholar 

  • Sugden D, Davidson K, et al. Melatonin, melatonin receptors and melanophores: a moving story. Pigment Cell Res. 2004;17(5):454–60.

    Article  PubMed  CAS  Google Scholar 

  • Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994;54:4313–20.

    PubMed  CAS  Google Scholar 

  • Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ. MKK7 is an essential component of the JNK signal transduction pathway activated by pro-inflammatory cytokines. Genes Dev. 2001;15:1419–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Townsend D, Tew K. Am J Pharmacogenomics. 2003;3:157–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Xu J, Ji C, Gu S, Lv Y, Li S, Xu Y, Xie Y, Mao Y. Cloning, expression and characterization of human glutathione S-transferase Omega 2. Int J Mol Med. 2005;16:19–27.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Our department is funded by DST FIST and UGC BSR, New Delhi Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thyaga Raju Kedam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kedam, T.R., Chittoor, P., Kurumala, D. (2018). Glutathione-S-Transferases. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_28

Download citation

Publish with us

Policies and ethics