Skip to main content

Olfactory Receptors

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 80 Accesses

Synonyms

Odorant receptors; Olfrs; ORs

Historical Background

Among the five senses, smell is unique in that it is dedicated to discriminating an enormous diversity of stimulating ligands. Olfactory sensory neurons achieve this detection by the expression of a multigene family of seven-transmembrane G protein–coupled receptors (GPCRs) originally identified by Linda Buck and Richard Axel (1991). These receptors, termed olfactory receptors (OR, plural ORs), are expressed in the olfactory tissue of all terrestrial vertebrates examined thus far, and have been shown to respond directly to odorant binding. The identification and subsequent study of ORs has provided great insight into the molecular and neuronal organization of the olfactory system. Indeed, in 2004, Buck and Axel were jointly awarded the Nobel Prize in Physiology for their pioneering work in odorant receptor discovery. Most of the current understanding of ORs results from experiments from the mouse model which is the focus of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakalyar HA, Reed RR. The second messenger cascade in olfactory receptor neurons. Curr Opin Neurobiol. 1991;1(2):204–8.

    Article  PubMed  CAS  Google Scholar 

  • Bean NJ, Wysocki CJ. Vomeronasal organ removal and female mouse aggression: the role of experience. Physiol Behav. 1989;45(5):875–82.

    Article  PubMed  CAS  Google Scholar 

  • Brunet LJ, Gold GH, Ngai J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron. 1996;17(4):681–93.

    Article  PubMed  CAS  Google Scholar 

  • Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65(1):175–87.

    Article  PubMed  CAS  Google Scholar 

  • Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, et al. Identification of protein pheromones that promote aggressive behaviour. Nature. 2007;450(7171):899–902.

    Article  PubMed  CAS  Google Scholar 

  • Cho JH, Lepine M, Andrews W, Parnavelas J, Cloutier JF. Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb. J Neurosci. 2007;27(34):9094–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ, Ogawa S, et al. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature. 2002;419(6902):70–4.

    Article  PubMed  CAS  Google Scholar 

  • Dhallan RS, Yau KW, Schrader KA, Reed RR. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature. 1990;347(6289):184–7.

    Article  PubMed  CAS  Google Scholar 

  • Dulac C, Axel R. A novel family of genes encoding putative pheromone receptors in mammals. Cell. 1995;83(2):195–206.

    Article  PubMed  CAS  Google Scholar 

  • Haga S, Hattori T, Sato T, Sato K, Matsuda S, Kobayakawa R, et al. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature. 2010;466(7302):118–22.

    Article  PubMed  CAS  Google Scholar 

  • Herrada G, Dulac C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell. 1997;90(4):763–73.

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Yamazaki T, Kobayakawa R, Kobayakawa K, Abe T, Suzuki M, et al. Pre-target axon sorting establishes the neural map topography. Science. 2009;325(5940):585–90.

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Reed RR. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science. 1989;244(4906):790–5.

    Article  PubMed  CAS  Google Scholar 

  • Kimoto H, Haga S, Sato K, Touhara K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature. 2005;437(7060):898–901.

    Article  PubMed  CAS  Google Scholar 

  • Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV, Shipley MT, et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature. 2000;405(6788):792–6.

    Article  PubMed  CAS  Google Scholar 

  • Liberles SD, Buck LB. A second class of chemosensory receptors in the olfactory epithelium. Nature. 2006;442(7103):645–50.

    Article  PubMed  CAS  Google Scholar 

  • Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA. 2009;106(24):9842–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malnic B, Hirono J, Sato T, Buck LB. Combinatorial receptor codes for odors. Cell. 1999;96(5):713–23.

    Article  PubMed  CAS  Google Scholar 

  • Mashukova A, Spehr M, Hatt H, Neuhaus EM. Beta-arrestin2-mediated internalization of mammalian odorant receptors. J Neurosci. 2006;26(39):9902–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsunami H, Buck LB. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell. 1997;90(4):775–84.

    Article  PubMed  CAS  Google Scholar 

  • Papes F, Logan DW, Stowers L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell. 2010;141(4):692–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 2009;459(7246):574–7.

    Article  PubMed  CAS  Google Scholar 

  • Ryba NJ, Tirindelli R. A new multigene family of putative pheromone receptors. Neuron. 1997;19(2):371–9.

    Article  PubMed  CAS  Google Scholar 

  • Serizawa S, Miyamichi K, Takeuchi H, Yamagishi Y, Suzuki M, Sakano H. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell. 2006;127(5):1057–69.

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Cygnar KD, Sagdullaev B, Valley M, Hirsh S, Stephan A, et al. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron. 2008;58(3):374–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wysocki CJ, Lepri JJ. Consequences of removing the vomeronasal organ. J Steroid Biochem Mol Biol. 1991;39(4B):661–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Firestein S. The olfactory receptor gene superfamily of the mouse. Nat Neurosci. 2002;5(2):124–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Stowers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stowers, L., Dey, S. (2018). Olfactory Receptors. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_120

Download citation

Publish with us

Policies and ethics