Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

CKIP-1

  • David W. Litchfield
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_111

Synonyms

Historical Background

CKIP-1 (CK2-interacting protein-1) was initially described on the basis of its interactions with protein kinase CK2 (Bosc et al. 2000). In this respect, the first publication on CKIP-1 described isolation of a cDNA encoding this novel protein from a human B-cell cDNA library using a yeast two-hybrid screen to identify interaction partners of protein kinase CK2. Interactions between CK2 and CKIP-1 were confirmed by co-immunoprecipitation experiments and in vitro interaction assays using recombinant and in vitro translated proteins. Prior to that report, a partial cDNA encoding its C-terminal 72 amino acids had been isolated from a mouse embryo cDNA library, using a yeast two-hybrid screen to identify interaction partners for the leucine zipper region of the c-Jun...

This is a preview of subscription content, log in to check access.

References

  1. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005;307:1621–5.PubMedCrossRefGoogle Scholar
  2. Bosc DG, Graham KC, Saulnier RB, Zhang C, Prober D, Gietz RD, Litchfield DW. Identification and characterization of CKIP-1, a novel pleckstrin homology-domain containing protein that interacts with protein kinase CK2. J Biol Chem. 2000;275:14295–306.PubMedCrossRefGoogle Scholar
  3. Canton DA, Litchfield DW. The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal. 2006;18:267–75.PubMedCrossRefGoogle Scholar
  4. Canton DA, Olsten ME, Kim K, Doherty-Kirby A, Lajoie G, Cooper JA, Litchfield DW. The pleckstrin homology domain-containing protein CKIP-1 is involved in regulation of cell morphology and the actin cytoskeleton and interaction with actin capping protein. Mol Cell Biol. 2005;25:3519–34.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Canton DA, Olsten ME, Niederstrasser H, Cooper JA, Litchfield DW. The role of CKIP-1 in cell morphology depends on its interaction with actin-capping protein. J Biol Chem. 2006;281:36347–59.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chevray PM, Nathans D. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci USA. 1992;89:5789–93.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Hernandez-Valladares M, Kim T, Kannan B, Tung A, Aguda AH, Larsson M, Cooper JA, Robinson RC. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators. Nat Struct Mol Biol. 2010;17:497–503.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2014;43:D512–20.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Li D, Zhu H, Liang C, Li W, Xing G, Ma L, Ding L, Zhang Y, He F, Zhang L. CKIP-1 suppresses the adipogenesis of mesenchymal stem cells by enhancing HDAC1-associated repression of C/EBPa. J Mol Cell Biol. 2014;6:368–79.PubMedCrossRefGoogle Scholar
  10. Ling S, Sun Q, Li Y, Zhang L, Zhang P, Wang X, Tian C, Li Q, Song J, Liu H, Kan G, Cao H, Huang Z, Nie J, Bai Y, Chen S, Li Y, He F, Zhang L, Li Y. CKIP-1 inhibits cardiac hypertrophy by regulating class II histone deacetylase phosphorylation through recruiting PP2A. Circulation. 2012;126:3028–40.PubMedCrossRefGoogle Scholar
  11. Litchfield DW, Bosc DG, Canton DA, Saulnier RB, Vilk G, Zhang C. Functional specialization of CK2 isoforms and characterization of isoform-specific binding partners. Mol Cell Biochem. 2001;227:21–9.PubMedCrossRefGoogle Scholar
  12. Lu K, Yin X, Weng T, Xi S, Li L, Xing G, Cheng X, Yang X, Zhang L, He F. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat Cell Biol. 2008;10:994–1002.PubMedCrossRefGoogle Scholar
  13. Nie J, Liu L, Xing G, Zhang M, Wei R, Guo M, Li X, Xie P, Li L, He F, Han W, Zhang L. CKIP-1 acts as a colonic tumor suppressor by repressing oncogenic Smurf1 synthesis and promoting Smurf1 autodegradation. Oncogene. 2014;33:3677–87.PubMedCrossRefGoogle Scholar
  14. Olsten ME, Canton DA, Zhang C, Walton PA, Litchfield DW. The pleckstrin homology domain of CK2 interacting protein-1 is required for interactions and recruitment of protein kinase CK2 to the plasma membrane. J Biol Chem. 2004;279:42114–27.PubMedCrossRefGoogle Scholar
  15. Safi A, Vandromme M, Caussanel S, Valdacci L, Baas D, Vidal M, Brun G, Schaeffer L, Goillot E. Role for the pleckstrin homology domain-containing protein CKIP-1 in phosphatidylinositol 3-kinase-regulated muscle differentiation. Mol Cell Biol. 2004;24:1245–55.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Sakamoto T, Kobayashi M, Taka K, Shinohara M, Io K, Nagata K, Iwai F, Takiuchi Y, Arai Y, Yamashita K, Shindo K, Kadowaki N, Koyanagi Y, Takaori-Kondo A. CKIP-1 is an intrinsic regulator of T-cell activation through an interaction with CARMA1. PLoS One. 2014;9:e85762.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Takeda S, Minakata S, Koike R, Kawahata I, Narita A, Kitazawa M, Ota M, Yamakuni T, Maéda Y, Nitanai Y. Two distinct mechanisms for actin capping protein regulation – steric and allosteric inhibition. PLoS Biol. 2010;8:e1000416.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Tokuda E, Fujita N, Oh-hara T, Sato S, Kurata A, Katayama R, Itoh T, Takenawa T, Miyazono K, Tsuruo T. Casein kinase 2-interacting protein-1, a novel Akt pleckstrin homology domain-interacting protein, down-regulates PI3K/Akt signaling and suppresses tumor growth in vivo. Cancer Res. 2007;67:9666–76.PubMedCrossRefGoogle Scholar
  19. Wang Y, Nie J, Wang Y, Zhang L, Lu K, Xing G, Xie P, He F, Zhang L. CKIP-1 couples Smurf1 ubiquitin ligase with Rpt6 subunit of proteasome to promote substrate degradation. EMBO Rep. 2012;13:1004–11.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Xi S, Tie Y, Lu K, Zhang M, Yin X, Chen J, Xing G, Tian C, Zheng X, He F, Zhang L. N-terminal PH domain and C-terminal auto-inhibitory region of CKIP-1 coordinate to determine its nucleus-plasma membrane shuttling. FEBS Lett. 2010;584:1223–30.PubMedCrossRefGoogle Scholar
  21. Zhang L, Xing G, Tie Y, Tang Y, Tian C, Li L, Sun L, Wei H, Zhu Y, He F. Role for the pleckstrin homology domain-containing protein CKIP-1 in AP-1 regulation and apoptosis. EMBO J. 2005;24:766–78.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Zhang L, Tie Y, Tian C, Xing G, Song Y, Zhu Y, Sun Z, He F. CKIP-1 recruits nuclear ATM partially to the plasma membrane through interaction with ATM. Cell Signal. 2006;18:1386–95.PubMedCrossRefGoogle Scholar
  23. Zhang L, Tang Y, Tie Y, Tian C, Wang J, Dong Y, Sun Z, He F. The PH domain containing protein CKIP-1 binds to IFP35 and Nmi and is involved in cytokine signaling. Cell Signal. 2007;19:932–44.PubMedCrossRefGoogle Scholar
  24. Zhang G, Guo B, Wu H, Tang T, Zhang BT, Zheng L, He Y, Yang Z, Pan X, Chow H, To K, Li Y, Li D, Wang X, Wang Y, Lee K, Hou Z, Dong N, Li G, Leung K, Hung L, He F, Zhang L, Qin L. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med. 2012;18:307–14.PubMedCrossRefGoogle Scholar
  25. Zhang L, Wang Y, Xiao F, Wang S, Xing G, Li Y, Yin X, Lu K, Wei R, Fan J, Chen Y, Li T, Xie P, Yuan L, Song L, Ma L, Ding L, He F, Zhang L. CKIP-1 regulates macrophage proliferation by inhibiting TRAF6-mediated Akt activation. Cell Res. 2014;24:742–61.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, Schulich School of Medicine and DentistryThe University of Western OntarioLondonCanada
  2. 2.Department of Oncology, Schulich School of Medicine and DentistryThe University of Western OntarioLondonCanada