Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Dickkopf 3

  • Rei Nakamura
  • Abigail S. Hackam
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101983

Synonyms

 Dkk3;  REIC

Historical Background

Dickkopf 3 (Dkk3) belongs to the Dkk family of proteins, which are secreted glycoproteins that regulate the canonical Wnt/β-catenin (“Wnt”) signaling pathway. Wnt signaling is an essential cellular communication pathway that mediates a diverse array of cellular and molecular activities in embryonic development, tissue homeostasis, and disease pathogenesis. The prototypic Dkk family member, Dkk1, has been well characterized as an essential modifier of Wnt signaling. In contrast, the function of Dkk3 was initially unknown because it was a weak regulator of Wnt signaling, and mice deficient in Dkk3 had only mild phenotypes (see below), despite its sequence similarity to the other Dkk genes. However, in recent years, new functions for Dkk3 have been identified in immune regulatory pathways, malignancies, and neurogenesis, raising the exciting possibility that Dkk3 is a critical regulator of these processes and may be an important novel...

This is a preview of subscription content, log in to check access.

References

  1. Barrantes Idel B, Montero-Pedrazuela A, Guadano-Ferraz A, Obregon MJ, Martinez de Mena R, Gailus-Durner V, et al. Generation and characterization of dickkopf3 mutant mice. Mol Cell Biol. 2006;26:2317–26.CrossRefPubMedGoogle Scholar
  2. Dellinger TH, Planutis K, Jandial DD, Eskander RN, Martinez ME, Zi X, et al. Expression of the Wnt antagonist Dickkopf-3 is associated with prognostic clinicopathologic characteristics and impairs proliferation and invasion in endometrial cancer. Gynecol Oncol. 2012;126:259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Fukusumi Y, Meier F, Gotz S, Matheus F, Irmler M, Beckervordersandforth R, et al. Dickkopf 3 promotes the differentiation of a rostrolateral midbrain dopaminergic neuronal subset in vivo and from pluripotent stem cells in vitro in the mouse. J Neurosci: Off J Soc Neurosci. 2015;35:13385–401.CrossRefGoogle Scholar
  4. Fung KY, Tabor B, Buckley MJ, Priebe IK, Purins L, Pompeia C, et al. Blood-based protein biomarker panel for the detection of colorectal cancer. PLoS One. 2015;10:e0120425.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998;391:357–62.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Lu D, Bao D, Dong W, Liu N, Zhang X, Gao S, et al. Dkk3 prevents familial dilated cardiomyopathy development through Wnt pathway. Lab Investig; J Tech Methods Pathol. 2016;96:239–48.CrossRefGoogle Scholar
  7. Ludwig J, Federico G, Prokosch S, Kublbeck G, Schmitt S, Klevenz A, et al. Dickkopf-3 acts as a modulator of B cell fate and function. J Immunol. 2015;194:2624–34.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Meister M, Papatriantafyllou M, Nordstrom V, Kumar V, Ludwig J, Lui KO, et al. Dickkopf-3, a tissue-derived modulator of local T-cell responses. Front Immunol. 2015;6:78.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Monaghan AP, Kioschis P, Wu W, Zuniga A, Bock D, Poustka A, et al. Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech Dev. 1999;87:45–56.CrossRefPubMedGoogle Scholar
  10. Nakamura RE, Hackam AS. Analysis of Dickkopf3 interactions with Wnt signaling receptors. Growth Factors. 2010;28:232–42.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Nakamura RE, Hunter DD, Yi H, Brunken WJ, Hackam AS. Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina. BMC Cell Biol. 2007;8:52.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Papatriantafyllou M, Moldenhauer G, Ludwig J, Tafuri A, Garbi N, Hollmann G, et al. Dickkopf-3, an immune modulator in peripheral CD8 T-cell tolerance. Proc Natl Acad Sci U S A. 2012;109:1631–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Tsuji T, Miyazaki M, Sakaguchi M, Inoue Y, Namba M. A REIC gene shows down-regulation in human immortalized cells and human tumor-derived cell lines. Biochem Biophys Res Commun. 2000;268:20–4.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Veeck J, Dahl E. Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3. Biochim Biophys Acta. 2012;1825:18–28.PubMedCentralPubMedGoogle Scholar
  15. Wang Z, Lin L, Thomas DG, Nadal E, Chang AC, Beer DG, et al. The role of Dickkopf-3 overexpression in esophageal adenocarcinoma. J Thorac Cardiovasc Surg. 2015;150:377–85 .e2PubMedPubMedCentralCrossRefGoogle Scholar
  16. Zenzmaier C, Hermann M, Hengster P, Berger P. Dickkopf-3 maintains the PANC-1 human pancreatic tumor cells in a dedifferentiated state. Int J Oncol. 2012;40:40–6.PubMedCentralPubMedGoogle Scholar
  17. Zhang Y, Liu Y, Zhu XH, Zhang XD, Jiang DS, Bian ZY, et al. Dickkopf-3 attenuates pressure overload-induced cardiac remodelling. Cardiovasc Res. 2014;102:35–45.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Zhang J, Gotz S, Vogt Weisenhorn DM, Simeone A, Wurst W, Prakash N. A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1(+/−) mice. Neurobiol Dis. 2015;82:32–45.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Spark TherapeuticsPhiladelphiaUSA
  2. 2.Bascom Palmer Eye InstituteUniversity of MiamiMiamiUSA