Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Transcription Factor PU.1

  • Carolina R. Batista
  • Rodney P. DeKoterEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101960


 PU.1;  SPI1;  Spi1;  Spi-1;  Sfpi1

Historical Background

PU.1 is a DNA-binding nuclear protein (transcription factor) that is a member of the E26 transformation-specific (ETS) family. PU.1 was named because it can interact with a “PU box,” a stretch of purines in the SV40 viral enhancer, that was identified as being functionally active in lymphoid cells (Petterson and Schaffner 1987). SPI1 was independently identified as the protein product of a gene dysregulated in murine erythroleukemia, as a consequence of proviral integration of the spleen focus-forming virus (SFFV) (Moreau-Gachelin et al. 1988). This gene/protein was named SPI1 for “spleen focus-forming virus proviral integration site 1.” PU.1 and SPI1 were subsequently recognized to be the same protein (Goebl 1990; Paul et al. 1991). PU.1 is encoded by Spi1 on mouse chromosome 2 and by SPI1 on human chromosome 11 (Nguyen et al. 1990). The presence of functional PU boxes led to the identification of PU.1 as a...

This is a preview of subscription content, log in to check access.


  1. Anderson MK, Hernandez-Hoyos G, Diamond RA, Rothenberg EV. Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development. 1999;126(14):3131–48.PubMedPubMedCentralGoogle Scholar
  2. Anderson KL, Perkin H, Surh CD, Venturini S, Maki RA, Torbett BE. Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells. J Immunol. 2000;164(4):1855–61.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Awe O, Hufford MM, Wu H, Pham D, Chang HC, Jabeen R, et al. PU.1 expression in T follicular helper cells limits CD40L-dependent germinal center B cell development. J Immunol. 2015;195(8):3705–15.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Back J, Allman D, Chan S, Kastner P. Visualizing PU.1 activity during hematopoiesis. Exp Hematol. 2005;33(4):395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brass AL, Zhu AQ, Singh H. Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. EMBO J. 1999;18(4):977–91.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol. 2010;11(6):527–34.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chopin M, Seillet C, Chevrier S, Wu L, Wang H, Morse 3rd HC, et al. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. J Exp Med. 2013;210(13):2967–80.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cook WD, McCaw BJ, Herring C, John DL, Foote SJ, Nutt SL, et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood. 2004;104(12):3437–44.PubMedPubMedCentralCrossRefGoogle Scholar
  9. DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science (80- ). 2000;288(5470):1439–41.CrossRefGoogle Scholar
  10. Eisenbeis CF, Singh H, Storb U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev. 1995;9(11):1377–87.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Escalante CR, Brass AL, Pongubala JM, Shatova E, Shen L, Singh H, et al. Crystal structure of PU.1/IRF-4/DNA ternary complex. Mol Cell. 2002;10(5):1097–105.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ghisletti S, Natoli G. Deciphering cis-regulatory control in inflammatory cells. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368(1620):20120370.CrossRefGoogle Scholar
  13. Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 2010;32(3):317–28.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai L-H, et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature. 2015;518(7539):365–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Goebl MK. The PU.1 transcription factor is the product of the putative oncogene Spi-1. Cell. 1990;61(7):1165–6.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hagemeier C, Bannister AJ, Cook A, Kouzarides T. The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci U S A. 1993;90(4):1580–4.CrossRefGoogle Scholar
  17. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hickstein DD, Baker DM, Gollahon KA. Back AL. Identification of the promoter of the myelomonocytic leukocyte integrin CD11b. Proc Natl Acad Sci U S A. 1992;89(6):2105–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155(4):934–47.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochemist. 2011;80(1):437–71.CrossRefGoogle Scholar
  21. Hoppe PS, Schwarzfischer M, Loeffler D, Kokkaliaris KD, Hilsenbeck O, Moritz N, et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature. 2016;535(7611):299–302.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Houston IB, Kamath MB, Schweitzer BL, Chlon TM, DeKoter RP. Reduction in PU.1 activity results in a block to B-cell development, abnormal myeloid proliferation, and neonatal lethality. Exp Hematol. 2007;35(7):1056–68.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hromas R, Orazi A, Neiman RS, Maki R, Van Beveran C, Moore J, et al. Hematopoietic lineage- and stage-restricted expression of the ETS oncogene family member PU.1. Blood. 1993;82(10):2998–3004.PubMedPubMedCentralGoogle Scholar
  24. Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno S, et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood. 2005;106(5):1590–600.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Klemsz MJ, Maki RA. Activation of transcription by PU.1 requires both acidic and glutamine domains. Mol Cell Biol. 1996;16(1):390–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell. 1990;61(1):113–24.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kodandapani R, Pio F, Ni CZ, Piccialli G, Klemsz M, McKercher S, et al. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature. 1996;380(6573):456–60.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kueh HY, Champhekar A, Nutt SL, Elowitz MB, Rothenberg EV. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science (80- ). 2013;341(6146):670–3.CrossRefGoogle Scholar
  29. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, et al. Immunogenetics. Chromatin state dynamics during blood formation. Science (80- ). 2014;345(6199):943–9.CrossRefGoogle Scholar
  30. Lavallee VP, Baccelli I, Krosl J, Wilhelm B, Barabe F, Gendron P, et al. The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias. Nat Genet. 2015;47(9):1030–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Leddin M, Perrod C, Hoogenkamp M, Ghani S, Assi S, Heinz S, et al. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood. 2011;117(10):2827–38.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lu D, Nakagawa R, Lazzaro S, Staudacher P, Abreu-Goodger C, Henley T, et al. The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. J Exp Med. 2014;211(11):2183–98.PubMedPubMedCentralCrossRefGoogle Scholar
  33. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 1996;15(20):5647–58.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Moreau-Gachelin F, Tavitian A, Tambourin P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature. 1988;331(6153):277–80.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Moreau-Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G, et al. Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol Cell Biol. 1996;16(5):2453–63.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt SL, et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature. 2013;497(7448):239–43.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD, et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood. United States2003;101:2074.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Nelsen B, Tian G, Erman B, Gregoire J, Maki R, Graves B, et al. Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ETS-domain proteins. Science (80-). 1993;261(5117):82–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Nerlov C, Querfurth E, Kulessa H, Graf T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood. 2000;95(8):2543–51.PubMedPubMedCentralGoogle Scholar
  40. Nguyen VC, Ray D, Gross MS, de Tand MF, Frezal J, Moreau-Gachelin F. Localization of the human oncogene SPI1 on chromosome 11, region p11.22. Hum Genet. 1990;84(6):542–6.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Nutt SL, Metcalf D, D’Amico A, Polli M, Wu L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med. 2005;201(2):221–31.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Pang SH, Minnich M, Gangatirkar P, Zheng Z, Ebert A, Song G, et al. PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia. 2016;30(6):1375–87.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Paul R, Schuetze S, Kozak SL, Kozak CA, Kabat D. The Sfpi-1 proviral integration site of Friend erythroleukemia encodes the ets-related transcription factor Pu.1. J Virol. 1991;65(1):464–7.PubMedPubMedCentralGoogle Scholar
  44. Petterson M, Schaffner W. A purine-rich DNA sequence motif present in SV40 and lymphotropic papovavirus binds a lymphoid-specific factor and contributes to enhancer activity in lymphoid cells. Genes Dev. 1987;1(9):962–72.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Polli M, Dakic A, Light A, Wu L, Tarlinton DM, Nutt SL. The development of functional B lymphocytes in conditional PU.1 knock-out mice. Blood. 2005;106(6):2083–90.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Pongubala JM, Atchison ML. Functional characterization of the developmentally controlled immunoglobulin kappa 3′ enhancer: regulation by Id, a repressor of helix-loop-helix transcription factors. Mol Cell Biol. 1991;11(2):1040–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Pongubala JM, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML. PU.1 recruits a second nuclear factor to a site important for immunoglobulin kappa 3′ enhancer activity. Mol Cell Biol. 1992;12(1):368–78.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ray D, Bosselut R, Ghysdael J, Mattei MG, Tavitian A, Moreau-Gachelin F. Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Mol Cell Biol. 1992;12(10):4297–304.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev. 1999;13(11):1398–411.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet. 2004;36(6):624–30.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Rosenbauer F, Owens BM, Yu L, Tumang JR, Steidl U, Kutok JL, et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet. 2006;38(1):27–37.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Schwickert TA, Tagoh H, Gultekin S, Dakic A, Axelsson E, Minnich M, et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol. 2014;15(3):283–93.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science (80-). 1994;265(5178):1573–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Sive JI, Basilico S, Hannah R, Kinston SJ, Calero-Nieto FJ, Gottgens B. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia. Leukemia. 2016;30(1):14–23.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Sokalski KM, Li SK, Welch I, Cadieux-Pitre HA, Gruca MR, DeKoter RP. Deletion of genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell acute lymphoblastic leukemia. Blood. 2011;118(10):2801–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Solomon LA, Li SK, Piskorz J, LS X, DeKoter RP. Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line. BMC Genomics. 2015;16.Google Scholar
  57. Staber PB, Zhang P, Ye M, Welner RS, Nombela-Arrieta C, Bach C, et al. Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells. Mol Cell. 2013;49(5):934–46.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Stopka T, Amanatullah DF, Papetti M, Skoultchi AI. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J. 2005;24(21):3712–23.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Turkistany SA, DeKoter RP. The transcription factor PU.1 is a critical regulator of cellular communication in the immune system. Arch Immunol Ther Exp. 2011;59(6):431–40.CrossRefGoogle Scholar
  60. Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG, et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood. 2003;101(1):270–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27(6):847–59.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wang F, Tong Q. Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation. AJP. Cell Physiol. 2008;295(1):C213–20.CrossRefGoogle Scholar
  63. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–19.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Will B, Vogler TO, Narayanagari S, Bartholdy B, Todorova TI, da Silva Ferreira M, et al. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat Med. 2015;21(10):1172–81.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Wontakal SN, Guo X, Will B, Shi M, Raha D, Mahajan MC, et al. A large gene network in immature erythroid cells is controlled by the myeloid and B cell transcriptional regulator PU.1. PLoS Genet. 2011;7(6):e1001392.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Yamamoto H, Kihara-Negishi F, Yamada T, Hashimoto Y, Oikawa T. Physical and functional interactions between the transcription factor PU.1 and the coactivator CBP. Oncogene. 1999;18(7):1495–501.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ye M, Ermakova O, Graf T. PU.1 is not strictly required for B cell development and its absence induces a B-2 to B-1 cell switch. J Exp Med. 2005;202(10):1411–22.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood. 2000;96(8):2641–8.PubMedPubMedCentralGoogle Scholar
  69. Zhang JA, Mortazavi A, Williams BA, Wold BJ, Rothenberg EV. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell. 2012;149(2):467–82.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ziliotto R, Gruca MR, Podder S, Noel G, Ogle CK, Hess DA, et al. PU.1 promotes cell cycle exit in the murine myeloid lineage associated with downregulation of E2F1. Exp Hematol. 2014;42(3):204–17 .e1PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, Centre for Human ImmunologyWestern UniversityLondonCanada