Skip to main content

Tristetraprolin (ZFP36) and TIS11B (ZFP36-L1)

  • Reference work entry
  • First Online:

Synonyms

Primary Name: Tristetraprolin

Primary Symbol: ZFP36

All Names: G0/G1 switch regulatory protein 24; G0S24; Growth factor-inducible nuclear protein NUP475; RNF162A; TIS11; TIS11A; Tristetraprolin; TTP; ZFP36; Zinc finger protein 36, C3H type, homolog (mouse); Zinc finger protein 36; Zinc finger protein, C3H type, 36 homolog

Primary Name: TIS11b

Primary Symbol: ZFP36L1

All Names: BERG36; Berg36; BRF1; Butyrate response factor 1; cMG1; Early response factor Berg36; EGF-response factor 1; ERF-1; RNF162B; TIS11B; Zinc finger protein 36, C3H type-like 1

Historical Background

The characterization of the tristetraprolin (TTP) family of RNA-binding proteins started in the early 1990s when Harvey Herschmann first cloned an immediate-early response gene induced by the carcinogenic phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) that he named TIS-11, standing for TPA-induced sequence 11 (Varnum et al. 1989). This and concurrent teams rapidly established that the cellular...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baou M, Jewell A, Murphy JJ. TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol. 2009;2009:634520. https://doi.org/10.1155/2009/634520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell SE, Sanchez MJ, Spasic-Boskovic O, Santalucia T, Gambardella L, Burton GJ, et al. The RNA binding protein Zfp36l1 is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Dev Dyn. 2006;235:3144–55.

    Article  PubMed  CAS  Google Scholar 

  • Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science. 1998;281:1001–5.

    Article  PubMed  CAS  Google Scholar 

  • Carrick DM, Chulada P, Donn R, Fabris M, McNicholl J, Whitworth W, et al. Genetic variations in ZFP36 and their possible relationship to autoimmune diseases. J Autoimmun. 2006;26:182–96. https://doi.org/10.1016/j.jaut.2006.01.004.

    Article  PubMed  CAS  Google Scholar 

  • Ciais D, Cherradi N, Bailly S, Grenier E, Berra E, Pouyssegur J, et al. Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene. 2004;23:8673–80. https://doi.org/10.1038/sj.onc.1207939.

    Article  PubMed  CAS  Google Scholar 

  • Ciais D, Cherradi N, Feige JJ. Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cell Mol Life Sci. 2013;70:2031–44. https://doi.org/10.1007/s00018-012-1150-y.

    Article  PubMed  CAS  Google Scholar 

  • Essafi-Benkhadir K, Onesto C, Stebe E, Moroni C, Pages G. Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol Biol Cell. 2007;18:4648–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabian MR, Frank F, Rouya C, Siddiqui N, Lai WS, Karetnikov A, et al. Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat Struct Mol Biol. 2013;20:735–9. https://doi.org/10.1038/nsmb.2572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griseri P, Bourcier C, Hieblot C, Essafi-Benkhadir K, Chamorey E, Touriol C, et al. A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients. Hum Mol Genet. 2011;20:4556–68. https://doi.org/10.1093/hmg/ddr390.

    Article  PubMed  CAS  Google Scholar 

  • Lai WS, Stumpo DJ, Blackshear PJ. Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J Biol Chem. 1990;265:16556–63.

    PubMed  CAS  Google Scholar 

  • Patial S, Curtis 2nd AD, Lai WS, Stumpo DJ, Hill GD, Flake GP, et al. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies. Proc Natl Acad Sci USA. 2016;113:1865–70. https://doi.org/10.1073/pnas.1519906113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Planel S, Rataj F, Feige J-J, Cherradi N. Post-transcriptional regulation of angiogenesis through AU-rich mRNA degradation: potential application in cancer therapy. In: Feige J-J, Pagès G, Soncin F, editors. Molecular mechanisms of angiogenesis: from ontogenesis to oncogenesis. Paris: Springer; 2014. p. 353–72.

    Chapter  Google Scholar 

  • Planel S, Salomon A, Jalinot P, Feige J, Cherradi N. A novel concept in antiangiogenic and antitumoral therapy: multitarget destabilization of short-lived mRNAs by the zinc finger protein ZFP36L1. Oncogene. 2010;29:5989–6003.

    Article  PubMed  CAS  Google Scholar 

  • Rataj F, Planel S, Desroches-Castan A, Le Douce J, Lamribet K, Denis J, et al. The cAMP pathway regulates mRNA decay through phosphorylation of the RNA-Binding Protein TIS11b/BRF1. Mol Biol Cell. 2016. https://doi.org/10.1091/mbc.E16-06-0379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdiscip Rev RNA. 2011;2:42–57. https://doi.org/10.1002/wrna.28.

    Article  PubMed  CAS  Google Scholar 

  • Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA. The role of tristetraprolin in cancer and inflammation. Front Biosci. 2012;17:174–88.

    Article  CAS  PubMed Central  Google Scholar 

  • Sedlyarov V, Fallmann J, Ebner F, Huemer J, Sneezum L, Ivin M, et al. Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution. Mol Syst Biol. 2016;12:868. https://doi.org/10.15252/msb.20156628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stumpo DJ, Byrd NA, Phillips RS, Ghosh S, Maronpot RR, Castranio T, et al. Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the tristetraprolin family. Mol Cell Biol. 2004;24:6445–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ, Patel DD, et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity. 1996;4:445–54.

    Article  PubMed  CAS  Google Scholar 

  • Varnum BC, Lim RW, Sukhatme VP, Herschman HR. Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3 T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene. 1989;4:119–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Cherradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cherradi, N., Feige, JJ. (2018). Tristetraprolin (ZFP36) and TIS11B (ZFP36-L1). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101947

Download citation

Publish with us

Policies and ethics