Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Zinc Finger E-Box-Binding Homeobox 2

  • Özden Akay
  • Kenneth Bruneel
  • Bieke Soen
  • Eva De Smedt
  • Niels Vandamme
  • Geert Berx
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101944

Synonyms

Historical Background

Zinc finger E-box-binding homeobox 2 (ZEB2) is a zinc finger and homeodomain transcription factor. ZEB2 was identified as a protein binding to the MH2 domain of different Smad proteins involved in BMP- and TGF-ß pathways (Verschueren et al. 1999). Initial studies correlating ZEB2 and E-cadherin downregulation in carcinomas were followed by a significant amount of research linking ZEB2 and epithelial-to-mesenchymal transition (EMT) during tumor progression (Comijn et al. 2001). Together with its paralog ZEB1, ZEB2 belongs to the Zeb family of transcription factors characterized by two zinc finger clusters separated by a homeodomain. During evolution, the duplication of the ancestral ZEB gene and diversification of ZEB2 from ZEB1 coincide with the onset of neural crest development and specification.

Physiological...

This is a preview of subscription content, log in to check access.

References

  1. Abba ML, Patil N, Leupold JH, Allgayer H. MicroRNA regulation of epithelial to mesenchymal transition. J Clin Med. 2016;5(1):8.PubMedCentralCrossRefGoogle Scholar
  2. Bindels S, Mestdagt M, Vandewalle C, Jacobs N, Volders L, Noel A, et al. Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene. 2006;25(36):4975–85.CrossRefPubMedGoogle Scholar
  3. Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop – a motor of cellular plasticity in development and cancer? EMBO Reports. 2010;11(9):670–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6):1267–78.CrossRefPubMedGoogle Scholar
  5. Conidi A, Cazzola S, Beets K, Coddens K, Collart C, Cornelis F, et al. Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFbeta/BMP signaling in vivo. Cytokine Growth Factor Rev. 2011;22(5–6):287–300.CrossRefPubMedGoogle Scholar
  6. Dominguez CX, Amezquita RA, Guan T, Marshall HD, Joshi NS, Kleinstein SH, et al. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J Exp Med. 2015;212(12):2041–56.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Espinosa-Parrilla Y, Amiel J, Auge J, Encha-Razavi F, Munnich A, Lyonnet S, et al. Expression of the SMADIP1 gene during early human development. Mech Develop. 2002;114(1–2):187–91.CrossRefGoogle Scholar
  8. Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci. 2012;69(15):2527–41.CrossRefGoogle Scholar
  9. Goossens S, Janzen V, Bartunkova S, Yokomizo T, Drogat B, Crisan M, et al. The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. Blood. 2011;117(21):5620–30.CrossRefPubMedGoogle Scholar
  10. Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21(9):989–97.CrossRefPubMedGoogle Scholar
  11. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell. 2011;22(10):1686–98.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Hegarty SV, Sullivan AM, O’Keeffe GW. Zeb2: a multifunctional regulator of nervous system development. Prog Neurobiol. 2015;132:81–95.CrossRefPubMedGoogle Scholar
  13. Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer. 2013;132(4):745–54.CrossRefPubMedGoogle Scholar
  14. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341–50.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Jahan F, Rattan S, Dixon I, Wigle J. Zeb2: a novel regulator of cardiac fibroblast to myofibroblast transition. Faseb J. 2015;29:556.1.Google Scholar
  16. Jimenez PT, Mainigi MA, Word RA, Kraus WL, Mendelson CR. miR-200 regulates endometrial development during early pregnancy. Mol Endocrinol. 2016;30(9):977–87.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Katoh M, Katoh M. Integrative genomic analyses of ZEB2: transcriptional regulation of ZEB2 based on SMADs, ETS1, HIF1alpha, POU/OCT, and NF-kappaB. Int J Oncol. 2009;34(6):1737–42.CrossRefPubMedGoogle Scholar
  18. Koopmansch B, Berx G, Foidart JM, Gilles C, Winkler R. Interplay between KLF4 and ZEB2/SIP1 in the regulation of E-cadherin expression. Biochem Biophys Res Commun. 2013;431(4):652–7.CrossRefPubMedGoogle Scholar
  19. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Mowat DR, Wilson MJ, Goossens M. Mowat-Wilson syndrome. J Med Genet. 2003;40(5):305–10.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Oba S, Kumano S, Suzuki E, Nishimatsu H, Takahashi M, Takamori H, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PloS One. 2010;5(10):e13614.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Omilusik KD, Best JA, Yu B, Goossens S, Weidemann A, Nguyen JV, et al. Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. J Exp Med. 2015;212(12):2027–39.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16(6):488–94.CrossRefPubMedGoogle Scholar
  24. Sanchez-Tillo E, Siles L, de Barrios O, Cuatrecasas M, Vaquero EC, Castells A, et al. Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res. 2011;1(7):897–912.PubMedPubMedCentralGoogle Scholar
  25. Scott CL, Soen B, Martens L, Skrypek N, Saelens W, Taminau J, et al. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J Exp Med. 2016;213(6):897–911.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRefPubMedGoogle Scholar
  27. Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem. 1999;274(29):20489–98.CrossRefPubMedGoogle Scholar
  28. Van de Putte T, Francis A, Nelles L, van Grunsven LA, Huylebroeck D. Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat-Wilson syndrome. Hum Mol Genet. 2007;16(12):1423–36.CrossRefPubMedGoogle Scholar
  29. van Helden MJ, Goossens S, Daussy C, Mathieu AL, Faure F, Marcais A, et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J Exp Med. 2015;212(12):2015–25.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Vandamme N, Berx G. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity. Front Oncol. 2014;4:352.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2009;66(5):773–87.CrossRefPubMedGoogle Scholar
  32. Wong TS, Gao W, Chan JY. Transcription regulation of E-cadherin by zinc finger E-box binding homeobox proteins in solid tumors. Biomed Res Int. 2014;2014:921564.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Özden Akay
    • 1
    • 2
    • 3
  • Kenneth Bruneel
    • 1
    • 2
    • 3
  • Bieke Soen
    • 1
    • 2
    • 3
  • Eva De Smedt
    • 1
    • 2
    • 3
  • Niels Vandamme
    • 1
    • 2
    • 3
  • Geert Berx
    • 1
    • 2
    • 3
  1. 1.Molecular and Cellular Oncology LabInflammation Research Center, VIBGhentBelgium
  2. 2.Department for Biomedical Molecular BiologyGhent UniversityGhentBelgium
  3. 3.Cancer Research Institute Ghent (CRIG)GhentBelgium