Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

ZEB1 (Zinc Finger E-Box Binding Homeobox 1)

  • Eva De Smedt
  • Kenneth Bruneel
  • Bieke Soen
  • Özden Akay
  • Niels Vandamme
  • Geert Berx
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101943

Synonyms

Danio rerio:  Kheper

Drosophila melanogaster:  Zfh-1

Gallus gallus domesticus:  δEF1

Homo sapiens:  NIL-2-A;  AREB6;  ZEB;  TCF-8

Mesocricetus auratus:  BZP

Mus musculus:  ZFHX1A

Rattus norvegicus:  MEB1;  ZFHEP

Xenopus laevis:  XdEF1

Historical Background

Zinc finger E-box binding homeobox 1 (ZEB1) is a zinc finger and homeodomain transcription factor playing a key role in epithelial-to-mesenchymal transition (EMT) during embryogenesis by controlling cell behavior and cell adhesion. ZEB1 has also been extensively studied in the context of tumor progression as many cancer types reactivate embryonic EMT programs to promote metastasis. Besides EMT-related programs in embryonic and pathological contexts, ZEB1 plays a key role during differentiation of a wide variety of cell types. ZEB1 was first reported in 1991 as δEF1, a transcriptional repressor of the δ1-crystalline enhancer in chicken during lens development (Funahashi et al. 1991). Independently, ZEB1 was described as...

This is a preview of subscription content, log in to check access.

References

  1. Aldave AJ, Han J, Frausto RF. Genetics of the corneal endothelial dystrophies: an evidence-based review. Clin Genet. 2013;84(2):109–19.CrossRefPubMedGoogle Scholar
  2. Arnold CN, Pirie E, Dosenovic P, McInerney GM, Xia Y, Wang N, et al. A forward genetic screen reveals roles for Nfkbid, Zeb1, and Ruvbl2 in humoral immunity. Proc Natl Acad Sci U S A. 2012;109(31):12286–93.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop – a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11(9):670–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68(19):7846–54.CrossRefPubMedGoogle Scholar
  5. Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV, et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene. 2012;31(43):4619–29.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chung DW, Frausto RF, Ann LB, Jang MS, Aldave AJ. Functional impact of ZEB1 mutations associated with posterior polymorphous and Fuchs’ endothelial corneal dystrophies. Invest Ophthalmol Vis Sci. 2014;55(10):6159–66.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005;24(14):2375–85.CrossRefPubMedGoogle Scholar
  8. Fukagawa A, Ishii H, Miyazawa K, Saitoh M. DeltaEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells. Cancer Med. 2015;4(1):125–35.CrossRefPubMedGoogle Scholar
  9. Funahashi J, Kamachi Y, Goto K, Kondoh H. Identification of nuclear factor delta EF1 and its binding site essential for lens-specific activity of the delta 1-crystallin enhancer. Nucleic Acids Res. 1991;19(13):3543–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Furusawa T, Moribe H, Kondoh H, Higashi Y. Identification of CtBP1 and CtBP2 as corepressors of zinc finger-homeodomain factor deltaEF1. Mol Cell Biol. 1999;19(12):8581–90.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Genetta T, Ruezinsky D, Kadesch T. Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Mol Cell Biol. 1994;14(9):6153–63.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci. 2012;69(15):2527–41.CrossRefGoogle Scholar
  13. Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21(9):989–97.CrossRefPubMedGoogle Scholar
  14. Higashi Y, Moribe H, Takagi T, Sekido R, Kawakami K, Kikutani H, et al. Impairment of T cell development in deltaEF1 mutant mice. J Exp Med. 1997;185(8):1467–79.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hlubek F, Lohberg C, Meiler J, Jung A, Kirchner T, Brabletz T. Tip60 is a cell-type-specific transcriptional regulator. J Biochem. 2001;129(4):635–41.CrossRefPubMedGoogle Scholar
  16. Ikeda K, Halle JP, Stelzer G, Meisterernst M, Kawakami K. Involvement of negative cofactor NC2 in active repression by zinc finger-homeodomain transcription factor AREB6. Mol Cell Biol. 1998;18(1):10–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341–50.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Jang MH, Kim HJ, Kim EJ, Chung YR, Park SY. Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome. Hum Pathol. 2015;46(9):1267–74.CrossRefPubMedGoogle Scholar
  19. Konradi S, Yasmin N, Haslwanter D, Weber M, Gesslbauer B, Sixt M, et al. Langerhans cell maturation is accompanied by induction of N-cadherin and the transcriptional regulators of epithelial-mesenchymal transition ZEB1/2. Eur J Immunol. 2013;44(2):553–60.CrossRefPubMedGoogle Scholar
  20. Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest. 2011;121(2):468–74.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun. 2016;7:10498.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC. Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development. 2008;135(3):579–88.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Llorens MC, Lorenzatti G, Cavallo NL, Vaglienti MV, Perrone AP, Carenbauer AL, et al. Phosphorylation regulates functions of ZEB1 transcription factor. J Cell Physiol. 2016;231(10):2205–17.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Nishimura G, Manabe I, Tsushima K, Fujiu K, Oishi Y, Imai Y, et al. DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell. 2006;11(1):93–104.CrossRefPubMedGoogle Scholar
  26. Park JS, Park HJ, Park YS, Lee SM, Yim JJ, Yoo CG, et al. Clinical significance of mTOR, ZEB1, ROCK1 expression in lung tissues of pulmonary fibrosis patients. BMC Pulm Med. 2014;14:168.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.CrossRefPubMedGoogle Scholar
  28. Postigo AA. Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J. 2003;22(10):2443–52.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Postigo AA, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 2003;22(10):2453–62.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Qin Y, Tang B, Hu CJ, Xiao YF, Xie R, Yong X, et al. An hTERT/ZEB1 complex directly regulates E-cadherin to promote epithelial-to-mesenchymal transition (EMT) in colorectal cancer. Oncotarget. 2016;7(1):351–61.CrossRefPubMedGoogle Scholar
  31. Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR. miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci USA. 2010;107(48):20828–33.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene. 2010;29(24):3490–500.CrossRefPubMedGoogle Scholar
  33. Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci. 2012;69(20):3429–56.CrossRefPubMedGoogle Scholar
  34. Sun W, Yang S, Shen W, Li H, Gao Y, Zhu TH. Identification of DeltaEF1 as a novel target that is negatively regulated by LMO2 in T-cell leukemia. Eur J Haematol. 2010;85(6):508–19.CrossRefPubMedGoogle Scholar
  35. Takagi T, Moribe H, Kondoh H, Higashi Y. DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development. 1998;125(1):21–31.PubMedGoogle Scholar
  36. Vandamme N, Berx G. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity. Front Oncol. 2014;4:352.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2009;66(5):773–87.CrossRefPubMedGoogle Scholar
  38. Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature. 2007;446(7138):882–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Williams TM, Moolten D, Burlein J, Romano J, Bhaerman R, Godillot A, et al. Identification of a zinc finger protein that inhibits IL-2 gene expression. Science. 1991;254(5039):1791–4.CrossRefPubMedGoogle Scholar
  40. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, et al. The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2011;302(3):F369–79.CrossRefPubMedGoogle Scholar
  42. Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16(9):864–75.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015;14(4):481–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Eva De Smedt
    • 1
    • 2
    • 3
  • Kenneth Bruneel
    • 1
    • 2
    • 3
  • Bieke Soen
    • 1
    • 2
    • 3
  • Özden Akay
    • 1
    • 2
    • 3
  • Niels Vandamme
    • 1
    • 2
    • 3
  • Geert Berx
    • 1
    • 2
    • 3
  1. 1.Molecular and Cellular Oncology Lab, Inflammation Research CenterVIBGhentBelgium
  2. 2.Department for Biomedical Molecular BiologyGhent UniversityGhentBelgium
  3. 3.Cancer Research Institute Ghent (CRIG)GhentBelgium