Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Thioredoxin Reductase

  • Fulvio Saccoccia
  • Andrea Bellelli
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101928

Synonyms

Historical Background

Thioredoxin reductase was discovered in the course of studies on the biosynthesis of deoxyribonucleotides in Escherichia coli. Indeed in 1964, Laurent and coworkers discovered that thioredoxin is the reducing substrate of ribonucleotide reductase, the essential enzyme catalyzing de novo synthesis of 2′-deoxyribonucleotides. This discovery prompted the search of the enzyme responsible for the recycling of oxidized thioredoxin. Thioredoxin reductase from E. coli was isolated and purified shortly afterwards (Moore et al. 1964). Subsequent work by the same authors leads to the purification of thioredoxin reductase from mammalian neoplastic tissues (Moore 1967). The three-dimensional structure of thioredoxin reductase from E. coliwas solved by X-ray crystallography in the early...

This is a preview of subscription content, log in to check access.

References

  1. Angelucci F, Dimastrogiovanni D, Boumis G, Brunori M, Miele AE, Saccoccia F, Bellelli A. Mapping the catalytic cycle of Schistosoma mansoni thioredoxin glutathione reductase by X-ray crystallography. J Biol Chem. 2010;285:32557–67.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxinreductase. Eur J Biochem. 2000;267:6102–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arscott LD, Gromer S, Schirmer RH, Becker K, Williams Jr CH. The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci USA. 1997;94:3621–6.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bauer H, Massey V, Arscott LD, Schirmer RH, Ballou DP, Williams Jr CH. The mechanism of high Mr thioredoxin reductase from Drosophila melanogaster. J Biol Chem. 2003;278:33020–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bevensee MO, Cummins TR, Haddad GG, Boron WF, Boyarsky G. pH regulation in single CA1 neurons acutely isolated from the hippocampi of immature and mature rats. J Physiol. 1996;94:315–28.CrossRefGoogle Scholar
  6. Cai W, Zhang L, Song Y, Wang B, Zhang B, Cui X, Hu G, Liu Y, Wu J, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase. Free Radic Biol Med. 2012;52:257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cenas N, Nivinskas H, Anusevicius Z, Sarlauskas J, Lederer F, Arnér ES. Interactions of quinones with thioredoxin reductase: a challenge to the antioxidant role of the mammalian selenoprotein. J Biol Chem. 2004;279:2583–92.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cheng Z, Arscott LD, Ballou DP, Williams Jr CH. The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila. Biochemistry. 2007;46:7875–85.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Fritz-Wolf K, Kehr S, Stumpf M, Rahlfs S, Becker K. Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat Commun. 2011;2:383.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Gromer S, Wissing J, Behne D, Ashman K, Schirmer RH, Flohé L, Becker K. A hypothesis on the catalytic mechanism of the selenoenzyme thioredoxin reductase. Biochem J. 1998a;332:591–2.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Gromer S, Arscott LD, Williams Jr CH, Schirmer RH, Becker K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J Biol Chem. 1998b;273:20096–101.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams Jr CH, Schirmer RH, Arnér ES. Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci USA. 2003;100:12618–23.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gromer S, Urig S, Becker K. The thioredoxin system – from science to clinic. Med Res Rev. 2004;24:40–89.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hirt RP, Müller S, Embley TM, Coombs GH. The diversity and evolution of thioredoxin reductase: new perspectives. Trends Parasitol. 2002;18:302–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun. 2010;396:120–4.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Müller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science. 2001;291:643–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Krauth-Siegel RL, Arscott LD, Schönleben-Janas A, Schirmer RH, Williams Jr CH. Role of active site tyrosine residues in catalysis by human glutathione reductase. Biochemistry. 1998;37:13968–77.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kuriyan J, Krishna TS, Wong L, Guenther B, Pahler A, Williams Jr CH, Model P. Convergent evolution of similar function in two structurally divergent enzymes. Nature. 1991;352:172–4.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Lee SR, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci U S A. 2000;97:252–6.Google Scholar
  20. Lennon BW, Williams Jr CH, Ludwig ML. Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science. 2000;289:1190–4.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Massey V, Matthews RG, Foust GP, Howell LG, Williams Jr CH, Zanetti G, Ronchi S. In: Sund H, editor. Pyridine nucleotide-dependent dehydrogenase. Springer-Verlag: Berlin; 1970. p. 393–409.CrossRefGoogle Scholar
  22. Matthews RG, Williams Jr CH. Measurement of the oxidation-reduction potentials for two-electron and four-electron reduction of lipoamide dehydrogenase from pig heart. J Biol Chem. 1976;251:3956–64.PubMedPubMedCentralGoogle Scholar
  23. Mayhew SG. The redox potential of dithionite and SO-2 from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. Eur J Biochem. 1978;85:535–47.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Moore EC. A thioredoxin--thioredoxin reductase system from rat tumor. Biochem Biophys Res Commun. 1967;29:264–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Moore EC, Reichard P, Thelander L. Enzymatic synthesysis of deoxyribonucleotides V. Purification and properties of Thioredoxin reductase from Escherichia coli B. J Biol Chem. 1964;239:3445–52.PubMedPubMedCentralGoogle Scholar
  26. Mulrooney SB, Williams Jr CH. Potential active-site base of thioredoxin reductase from Escherichia coli: examination of histidine245 and aspartate139 by site-directed mutagenesis. Biochemistry. 1994;33:3148–54.PubMedCrossRefGoogle Scholar
  27. Pai EF, Schulz GE. The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates. J Biol Chem. 1983;258:1752–7.PubMedGoogle Scholar
  28. Rakauskiene GA, Cenas NK, Kulys JJ. A 'branched' mechanism of the reverse reaction of yeast glutathione reductase. An estimation of the enzyme standard potential values from the steady-state kinetics data. FEBS Lett. 1989;243:33–6.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Saccoccia F, Angelucci F, Boumis G, Brunori M, Miele AE, Williams DL, Bellelli A. On the mechanism and rate of gold incorporation into thiol-dependent flavoreductases. J Inorg Biochem. 2012;108:105–11.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Saccoccia F, Angelucci F, Boumis G, Carotti D, Desiato G, Miele AE, Bellelli A. Thioredoxin reductase and its inhibitors. Curr Protein Pept Sci. 2014a;15:621–46.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Saccoccia F, Angelucci F, Boumis G, Desiato G, Miele AE, Bellelli A. Selenocysteine robustness versus cysteine versatility: a hypothesis on the evolution of the moonlighting behaviour of peroxiredoxins. Biochem Soc Trans. 2014b;42:1768–72.PubMedCrossRefGoogle Scholar
  32. Schallreuter KU, Gleason FK, Wood JM. The mechanism of action of the nitrosourea anti-tumor drugs on thioredoxin reductase, glutathione reductase and ribonucleotide reductase. Biochim Biophys Acta. 1990;1054:14–20.PubMedCrossRefGoogle Scholar
  33. Thorpe C, Williams Jr CH. Differential reactivity of the two active site cysteine residues generated on reduction of pig heart lipoamide dehydrogenase. J Biol Chem. 1976;251:3553–7.PubMedGoogle Scholar
  34. Veine DM, Arscott LD, Williams Jr CH. Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis. Biochemistry. 1998;37:15575–82.PubMedCrossRefGoogle Scholar
  35. Williams Jr CH. Mechanism and structure of thioredoxin reductase from Escherichia coli. FASEB J. 1995;9:1267–76.PubMedCrossRefGoogle Scholar
  36. Williams CH, Arscott LD, Müller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH. Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem. 2000a;267:6110–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Williams CH, Arscott LD, Müller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH. Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem. 2000b Oct;267:6110–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Zhong L, Holmgren A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem. 2000;275:18121–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.National Research Council, Institute of Cell Biology and NeurobiologyCampus A. Buzzati-Traverso Monterotondo scaloRomeItaly
  2. 2.Istituto Pasteur – Fondazione Cenci-Bolognetti, Istituto di Biologia e patologia Molecolare del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly