Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Matthew W. Brown
  • David J. Pinato
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101916


Historical Background

AXL, the founding member of the TAM (TYRO3, AXL, and MER) family of receptor tyrosine kinases, was concurrently discovered and characterized by multiple groups in 1991. In their seminal paper, O’Bryan and collaborators were able to transform fibroblasts transfected with DNA isolated from chronic myelogenous leukemic (CML) cells, subsequently isolating a novel transforming gene, which they named AXL based on the Greek word anexelekto, meaning uncontrolled (O’Bryan et al. 1991). Functional characterization of the product of this gene revealed a protein endowed with tyrosine kinase activity and a hydrophobic transmembrane domain which exhibited significant homology with numerous receptor tyrosine kinases (RTKs). Highlighting the oncogenic nature of this protein, they demonstrated that overexpression of AXLwas capable of inducing neoplastic transformation of fibroblasts. In...

This is a preview of subscription content, log in to check access.


  1. Allen MP, Linseman DA, Udo H, Xu M, Schaack JB, Varnum B, et al. Novel mechanism for gonadotropin-releasing hormone neuronal migration involving GAS6/Ark signaling to p38 mitogen-activated protein kinase. Mol Cell Biol. 2002;22:599–613.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allison AC. The possible role of vitamin K deficiency in the pathogenesis of Alzheimer’s disease and in augmenting brain damage associated with cardiovascular disease. Med Hypotheses. 2001;57:151–5.  https://doi.org/10.1054/mehy.2001.1307.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asiedu MK, Beauchamp-Perez FD, Ingle JN, Behrens MD, Radisky DC, Knutson KL. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene. 2014;33:1316–24.  https://doi.org/10.1038/onc.2013.57.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Axelrod H, Pienta KJ. AXL as a mediator of cellular growth and survival. Oncotarget. 2014;5:8818–52.  https://doi.org/10.18632/oncotarget.2422.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barcena C, Stefanovic M, Tutusaus A, Joannas L, Menendez A, Garcia-Ruiz C, et al. AXL/gas6 pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. J Hepatol. 2015;63:670–8.  https://doi.org/10.1016/j.jhep.2015.04.013.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brown M, Black JR, Sharma R, Stebbing J, Pinato DJ. Gene of the month: AXL. J Clin Pathol. 2016;69:391–7.  https://doi.org/10.1136/jclinpath-2016-203629.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Budagian V, Bulanova E, Orinska Z, Duitman E, Brandt K, Ludwig A, et al. Soluble AXL is generated by ADAM10-dependent cleavage and associates with GAS6 in mouse serum. Mol Cell Biol. 2005;25:9324–39.  https://doi.org/10.1128/MCB.25.21.9324-9339.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ekman C, Jonsen A, Sturfelt G, Bengtsson AA, Dahlback B. Plasma concentrations of GAS6 and sAXL correlate with disease activity in systemic lupus erythematosus. Rheumatology (Oxford). 2011;50:1064–9.  https://doi.org/10.1093/rheumatology/keq459.CrossRefGoogle Scholar
  9. Fourgeaud L, Traves PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240–4.  https://doi.org/10.1038/nature17630.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hafizi S, Alindri F, Karlsson R, Dahlback B. Interaction of AXL receptor tyrosine kinase with C1-TEN, a novel C1 domain-containing protein with homology to tensin. Biochem Biophys Res Commun. 2002;299:793–800.PubMedCrossRefGoogle Scholar
  11. Han J, Bae J, Choi CY, Choi SP, Kang HS, Jo EK, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016.  https://doi.org/10.1080/15548627.2016.1235124.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Huang M, Rigby AC, Morelli X, Grant MA, Huang G, Furie B, et al. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nat Struct Biol. 2003;10:751–6.  https://doi.org/10.1038/nsb971.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Janssen JW, Schulz AS, Steenvoorden AC, Schmidberger M, Strehl S, Ambros PF, et al. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene. 1991;6:2113–20.PubMedPubMedCentralGoogle Scholar
  14. Kawasaki Y, Nakagawa A, Nagaosa K, Shiratsuchi A, Nakanishi Y. Phosphatidylserine binding of class B scavenger receptor type I, a phagocytosis receptor of testicular sertoli cells. J Biol Chem. 2002;277:27559–66.  https://doi.org/10.1074/jbc.M202879200.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kim EM, Lee EH, Lee HY, Choi HR, Ji KY, Kim SM, et al. AXL signaling induces development of natural killer cells in vitro and in vivo. Protoplasma. 2016.  https://doi.org/10.1007/s00709-016-1016-5.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Korshunov VA. AXL-dependent signalling: a clinical update. Clin Sci (Lond). 2012;122:361–8.  https://doi.org/10.1042/CS20110411.CrossRefGoogle Scholar
  17. Lai C, Lemke G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron. 1991;6:691–704.PubMedCrossRefGoogle Scholar
  18. Lemke G. Biology of the TAM receptors. Cold Spring Harb Perspect Biol. 2013;5:a009076.  https://doi.org/10.1101/cshperspect.a009076.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat Rev Immunol. 2008;8:327–36.  https://doi.org/10.1038/nri2303.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Linger RM, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res. 2008;100:35–83.  https://doi.org/10.1016/S0065-230X(08)00002-X.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu S, DeLalio LJ, Isakson BE, Wang TT. AXL-mediated productive infection of human endothelial cells by Zika virus. Circ Res. 2016.  https://doi.org/10.1161/CIRCRESAHA.116.309866.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lu Q, Gore M, Zhang Q, Camenisch T, Boast S, Casagranda F, et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature. 1999;398:723–8.  https://doi.org/10.1038/19554.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Manfioletti G, Brancolini C, Avanzi G, Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol. 1993;13:4976–85.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Mark MR, Chen J, Hammonds RG, Sadick M, Godowsk PJ. Characterization of GAS6, a member of the superfamily of G domain-containing proteins, as a ligand for Rse and AXL. J Biol Chem. 1996;271:9785–9.PubMedCrossRefGoogle Scholar
  25. Melaragno MG, Cavet ME, Yan C, Tai LK, Jin ZG, Haendeler J, et al. GAS6 inhibits apoptosis in vascular smooth muscle: role of AXL kinase and Akt. J Mol Cell Cardiol. 2004;37:881–7.  https://doi.org/10.1016/j.yjmcc.2004.06.018.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mok CC, Ding HH, Kharboutli M, Mohan C. AXL, ferritin, insulin-like growth factor binding protein 2, and tumor necrosis factor receptor type II as biomarkers in systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2016;68:1303–9.  https://doi.org/10.1002/acr.22835.CrossRefGoogle Scholar
  27. Mudduluru G, Allgayer H. The human receptor tyrosine kinase AXL gene – promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci Rep. 2008;28:161–76.  https://doi.org/10.1042/BSR20080046.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M, Allgayer H. Regulation of AXL receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene. 2011;30:2888–99.  https://doi.org/10.1038/onc.2011.13.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR. Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell. 2016;18:591–6.  https://doi.org/10.1016/j.stem.2016.03.012.CrossRefPubMedPubMedCentralGoogle Scholar
  30. O’Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, et al. AXL, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991;11:5016–31.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Paccez JD, Vogelsang M, Parker MI, Zerbini LF. The receptor tyrosine kinase AXL in cancer: biological functions and therapeutic implications. Int J Cancer. 2014;134:1024–33.  https://doi.org/10.1002/ijc.28246.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Paolino M, Penninger JM. The role of TAM family receptors in immune cell function: implications for cancer therapy. Cancers (Basel). 2016;8.  https://doi.org/10.3390/cancers8100097.
  33. Park IK, Trotta R, Yu J, Caligiuri MA. AXL/GAS6 pathway positively regulates FLT3 activation in human natural killer cell development. Eur J Immunol. 2013;43:2750–5.  https://doi.org/10.1002/eji.201243116.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rescigno J, Mansukhani A, Basilico C. A putative receptor tyrosine kinase with unique structural topology. Oncogene. 1991;6:1909–13.PubMedPubMedCentralGoogle Scholar
  35. Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, Gohring W, Ullrich A, et al. Structural basis for GAS6-AXL signalling. EMBO J. 2006;25:80–7.  https://doi.org/10.1038/sj.emboj.7600912.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Savage JC, Jay T, Goduni E, Quigley C, Mariani MM, Malm T, et al. Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer’s disease. J Neurosci. 2015;35:6532–43.  https://doi.org/10.1523/JNEUROSCI.4586-14.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schulz AS, Schleithoff L, Faust M, Bartram CR, Janssen JW. The genomic structure of the human UFO receptor. Oncogene. 1993;8:509–13.PubMedPubMedCentralGoogle Scholar
  38. Suh CH, Hilliard B, Li S, MERrill JT, Cohen PL. TAM receptor ligands in lupus: protein S but not GAS6 levels reflect disease activity in systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R146.  https://doi.org/10.1186/ar3088.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tai KY, Shieh YS, Lee CS, Shiah SG, Wu CW. AXL promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene. 2008;27:4044–55.  https://doi.org/10.1038/onc.2008.57.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Valverde P. Effects of GAS6 and hydrogen peroxide in AXL ubiquitination and downregulation. Biochem Biophys Res Commun. 2005;333:180–5.  https://doi.org/10.1016/j.bbrc.2005.05.086.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Vouri M, Croucher DR, Kennedy SP, An Q, Pilkington GJ, Hafizi S. AXL-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells. Oncogenesis. 2016;5:e266.  https://doi.org/10.1038/oncsis.2016.66.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wu X, Liu X, Koul S, Lee CY, Zhang Z, Halmos B. AXL kinase as a novel target for cancer therapy. Oncotarget. 2014;5:9546–63.  https://doi.org/10.18632/oncotarget.2542.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44:852–60.  https://doi.org/10.1038/ng.2330.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhou L, Liu XD, Sun M, Zhang X, German P, Bai S, et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene. 2016;35:2687–97.  https://doi.org/10.1038/onc.2015.343.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhu H, Sun X, Zhu L, Hu F, Shi L, Fan C, et al. Different expression patterns and clinical significance of mAXL and sAXL in systemic lupus erythematosus. Lupus. 2014;23:624–34.  https://doi.org/10.1177/0961203314520839.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Surgery and CancerImperial College London, Hammersmith Hospital CampusLondonUK