Skip to main content

SLC3A2

  • Reference work entry
  • First Online:

Synonyms

4F2hc; 4F2 heavy chain; CD98hc; CD98 heavy chain; FRP-1; Solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2

Historical Background

The ability of cells to sense, respond, and adapt to their environment is essential for multicellular life. SLC3A2 protein provides cells with the capacity of adjusting to their surroundings by mediating two fundamental molecular functions: amino acid transport and integrin signaling.

SLC3A2 is involved in many cellular processes, such as early activation of T and B cells (Cantor et al. 2009, 2012), cell fusion (Deves et al. 2000; Takesono et al. 2012), cell survival and migration (Feral et al. 2005), cell proliferation (Cantor et al. 2009; Boulter et al. 2013; de la Ballina et al. 2016), mechanotransduction (Estrach et al. 2014), and angiogenesis ( Liao et al. 2016). Thus, SLC3A2 is crucial for responding to different cellular stresses (i.e., oxidative or nutritional stress (de la Ballina et al. 2016), lack...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bajaj J, Konuma T, Lytle N, Kwon H, Ablack J, Cantor J, Rizzieri D, Chuah C, Oehler V, Broome E, Ball E, van der Horst E, Ginsberg M, Reya T, et al. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell. 2016;30:792–805. doi:10.1016/j.ccell.2016.10.00330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borsani G, Bassi MT, Sperandeo MP, De Grandi A, Buoninconti A, Riboni M, Manzoni M, Incerti B, Pepe A, Andria G, Ballabio A, Sebastio G, et al. SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nat Genet. 1999;21:297–301. doi:10.1038/681521.

    Article  PubMed  CAS  Google Scholar 

  • Boulter E, Estrach S, Errante A, Pons C, Cailleteau L, Tissot F, Meneguzzi G, Féral CC, et al. CD98hc (SLC3A2) regulation of skin homeostasis wanes with age. J Exp Med. 2013;210:173–90. doi:10.1084/jem.20121651210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bröer S, Wagner CA, et al. Structure-function relationships of heterodimeric amino acid transporters. Cell Biochem Biophys. 2002;36:155–68. doi:10.1385/CBB:36:2-3:15536.

    Article  PubMed  Google Scholar 

  • Cantor J, Browne CD, Ruppert R, Féral CC, Fässler R, Rickert RC, Ginsberg MH, et al. CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat Immunol. 2009;10:412–9. doi:10.1038/ni.171210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantor JM, Ginsberg MH, et al. CD98 at the crossroads of adaptive immunity and cancer. J Cell Sci. 2012;125:1373–82. doi:10.1242/jcs.096040125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cibrian D, Saiz ML, de la Fuente H, Sánchez-Díaz R, Moreno-Gonzalo O, Jorge I, Ferrarini A, Vázquez J, Punzón C, Fresno M, Vicente-Manzanares M, Daudén E, Fernández-Salguero PM, Martín P, Sánchez-Madrid F, et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat Immunol. 2016;17:985–96. doi:10.1038/ni.350417.

    Article  PubMed  CAS  Google Scholar 

  • Cormerais Y, Giuliano S, LeFloch R, Front B, Durivault J, Tambutté E, Massard PA, de la Ballina LR, Endou H, Wempe MF, Palacin M, Parks SK, Pouyssegur J, et al. Genetic disruption of the multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth. Cancer Res. 2016;76:4481–92. doi:10.1158/0008-5472.CAN-15-337676.

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105.

    Article  PubMed  CAS  Google Scholar 

  • Deves R, Boyd CAR, et al. Surface antigen CD98 (4F2): not a single membrane protein, but a family of proteins with multiple functions. J Membr Biol. 2000;173:165–77.

    Article  PubMed  CAS  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. doi:10.1016/j.cell.2012.03.042149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domínguez F, Simón C, Quiñonero A, Ramírez MÁ, González-Muñoz E, Burghardt H, Cervero A, Martínez S, Pellicer A, Palacín M, Sánchez-Madrid F, Yáñez-Mó M, et al. Human endometrial CD98 is essential for blastocyst adhesion. PLoS One. 2010;5:e13380. doi:10.1371/journal.pone.00133805.

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrach S, Lee SA, Boulter E, Pisano S, Errante A, Tissot FS, Cailleteau L, Pons C, Ginsberg MH, Féral CC, et al. CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction. Cancer Res. 2014;74:6878–89. doi:10.1158/0008-5472.CAN-14-057974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fenczik CA, Sethi T, Ramos JW, Hughes PE, Ginsberg MH, et al. Complementation of dominant suppression implicates CD98 in integrin activation. Nature. 1997;390:81–5. doi:10.1038/36349390.

    Article  PubMed  CAS  Google Scholar 

  • Feral CC, Nishiya N, Fenczik CA, Stuhlmann H, Slepak M, Ginsberg MH, et al. CD98hc (SLC3A2) mediates integrin signaling. Proc Natl Acad Sci U S A. 2005;102:355–60. doi:10.1073/pnas.0404852102102.

    Article  PubMed  CAS  Google Scholar 

  • Féral CC, Zijlstra A, Tkachenko E, Prager G, Gardel ML, Slepak M, Ginsberg MH, et al. CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling. J Cell Biol. 2007;178:701–11. doi:10.1083/jcb.200705090178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fort J, de la Ballina LR, Burghardt HE, Ferrer-Costa C, Turnay J, Ferrer-Orta C, Usón I, Zorzano A, Fernández-Recio J, Orozco M, Lizarbe MA, Fita I, Palacín M, et al. The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane. J Biol Chem. 2007;282:31444–52. doi:10.1074/jbc.M704524200282.

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis D, Kanai Y, Palacín M, et al. The SLC3 and SLC7 families of amino acid transporters. Mol Asp Med. 2013;34:139–58. doi:10.1016/j.mam.2012.10.00734.

    Article  CAS  Google Scholar 

  • Ip H, Sethi T, et al. CD98 signals controlling tumorigenesis. Int J Biochem Cell Biol. 2016;81:148–50. doi:10.1016/j.biocel.2016.11.00581.

    Article  PubMed  CAS  Google Scholar 

  • de la Ballina LR, Cano-Crespo S, González-Muñoz E, Bial S, Estrach S, Cailleteau L, Tissot F, Daniel H, Zorzano A, Ginsberg MH, Palacín M, Féral CC, et al. Amino acid transport associated to cluster of differentiation 98 heavy chain (CD98hc) is at the cross-road of oxidative stress and amino acid availability. J Biol Chem. 2016;291:9700–11. doi:10.1074/jbc.M115.704254291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemaître G, Stella A, Feteira J, Baldeschi C, Vaigot P, Martin MT, Monsarrat B, Waksman G, et al. CD98hc (SLC3A2) is a key regulator of keratinocyte adhesion. J Dermatol Sci. 2011;61:169–79. doi:10.1016/j.jdermsci.2010.12.00761.

    Article  PubMed  Google Scholar 

  • Liao Z, Cantor JM, et al. Endothelial cells require CD98 for efficient angiogenesis-brief report. Arterioscler Thromb Vasc Biol. 2016;36:2163–6. doi:10.1161/ATVBAHA.116.30833536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Charrier L, Gewirtz A, Sitaraman S, Merlin D, et al. CD98 and intracellular adhesion molecule I regulate the activity of amino acid transporter LAT-2 in polarized intestinal epithelia. J Biol Chem. 2003;278:23672–7. doi:10.1074/jbc.M302777200278.

    Article  PubMed  CAS  Google Scholar 

  • McCracken AN, Edinger AL, et al. Nutrient transporters: the Achilles’ heel of anabolism. Trends Endocrinol Metab. 2013;24:200–8. doi:10.1016/j.tem.2013.01.00224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D, et al. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250. doi:10.1038/ncomms82506.

    Article  PubMed  Google Scholar 

  • Nguyen HT, Dalmasso G, Torkvist L, Halfvarson J, Yan Y, Laroui H, Shmerling D, Tallone T, D’Amato M, Sitaraman SV, Merlin D, et al. CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice. J Clin Invest. 2011;121:1733–47. doi:10.1172/JCI44631121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521–34. doi:10.1016/j.cell.2008.11.044136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palacín M, Errasti-Murugarren E, Rosell A, et al. Heteromeric amino acid transporters. In search of the molecular bases of transport cycle mechanisms. Biochem Soc Trans. 2016;44:745–52. doi:10.1042/BST2015029444.

    Article  PubMed  Google Scholar 

  • Reig N, Chillarón J, Bartoccioni P, Fernández E, Bendahan A, Zorzano A, Kanner B, Palacín M, Bertran J, et al. The light subunit of system b(o,+) is fully functional in the absence of the heavy subunit. EMBO J. 2002;21:4906–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosell A, Meury M, Álvarez-Marimon E, Costa M, Pérez-Cano L, Zorzano A, Fernández-Recio J, Palacín M, Fotiadis D, et al. Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proc Natl Acad Sci U S A. 2014;111:2966–71. doi:10.1073/pnas.1323779111111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Safory H, Neame S, Shulman Y, Zubedat S, Radzishevsky I, Rosenberg D, Sason H, Engelender S, Avital A, Hülsmann S, Schiller J, Wolosker H, et al. The alanine-serine-cysteine-1 (Asc-1) transporter controls glycine levels in the brain and is required for glycinergic inhibitory transmission. EMBO Rep. 2015;16:590–8. doi:10.15252/embr.20143956116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takesono A, Moger J, Farooq S, Cartwright E, Dawid IB, Wilson SW, Kudoh T. Solute carrier family 3 member 2 (Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubule networks in the zebrafish embryo. Proc Natl Acad Sci U S A. 2012;109(9):3371–6. doi:10.1073/pnas.1200642109.

    Article  Google Scholar 

  • Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M, Morelli E, Sonmez FM, Bilguvar K, Ohgaki R, Kanai Y, Johansen A, Esharif S, Ben-Omran T, Topcu M, Schlessinger A, Indiveri C, Duncan KE, Caglayan AO, Gunel M, Gleeson JG, Novarino G, et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell. 2016;167:1481–94.e18. doi:10.1016/j.cell.2016.11.013167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrents D, Mykkänen J, Pineda M, Feliubadaló L, Estévez R, de Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus ML, Aula P, Palacín M, et al. Identification of SLC7A7, encoding y + LAT-1, as the lysinuric protein intolerance gene. Nat Genet. 1999;21:293–6. doi:10.1038/680921.

    Article  PubMed  CAS  Google Scholar 

  • Tsumura H, Suzuki N, Saito H, Kawano M, Otake S, Kozuka Y, Komada H, Tsurudome M, Ito Y, et al. The targeted disruption of the CD98 gene results in embryonic lethality. Biochem Biophys Res Commun. 2003;308:847–51.

    Article  PubMed  CAS  Google Scholar 

  • Veettil MV, Sadagopan S, Sharma-Walia N, Wang FZ, Raghu H, Varga L, Chandran B, et al. Kaposi’s sarcoma-associated herpesvirus forms a multimolecular complex of integrins (alphaVbeta5, alphaVbeta3, and alpha3beta1) and CD98-xCT during infection of human dermal microvascular endothelial cells, and CD98-xCT is essential for the postentry stage of infection. J Virol. 2008;82:12126–44. doi:10.1128/JVI.01146-0882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu D, Hemler ME, et al. Metabolic activation-related CD147-CD98 complex. Mol Cell Proteomics. 2005;4:1061–71. doi:10.1074/mcp.M400207-MCP2004.

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Vasudevan S, Nguyen HT, Merlin D, et al. Intestinal epithelial CD98: an oligomeric and multifunctional protein. Biochim Biophys Acta. 2008;1780:1087–92. doi:10.1016/j.bbagen.2008.06.0071780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zent R, Fenczik CA, Calderwood DA, Liu S, Dellos M, Ginsberg MH, et al. Class-and splice variant-specific association of CD98 with integrin beta cytoplasmic domains. J Biol Chem. 2000;275:5059.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chloé C. Féral or Manuel Palacín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de La Ballina, L.R., de Garay, T., Féral, C.C., Palacín, M. (2018). SLC3A2. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101895

Download citation

Publish with us

Policies and ethics