Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Synapsin II

  • Ashley BernardoEmail author
  • Shreya Prashar
  • Luke Molinaro
  • Ram Mishra
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101863


Historical Background

Synapsin II (SYN2) was identified in the late 1970s following studies that began searching for neuronal substrates for endogenous cyclic adenosine 3′:5′ monophosphate (cAMP)-dependent phosphorylation. cAMP had been suggested to mediate neurotransmitter regulation through synaptic membrane proteins and led to the discovery of several proteins including the family of synapsin proteins. Highly specific to nerve terminals, synapsins were among one of the first identified synaptic vesicle-associated protein families (De Camilli et al. 1990).

The first member identified in the synapsin family was synapsin I, initially named protein I, and described by Paul Greengard in 1972 as a primary synaptic membrane phosphorylation target by cAMP-dependent kinases (Johnson et al. 1972). Following the discovery of synapsin I, a second member of the synapsin family – protein III – later renamed synapsin II (SYN2) was identified in the late 1970s...

This is a preview of subscription content, log in to check access.



The work described in this review was supported by the Canadian Institute of Health Research (CIHR).


  1. Brenes O, Giachello CNG, Corradi AM, Ghirardi M, Montarolo PG. Synapsin knockdown is associated with decreased neurite outgrowth, functional synaptogenesis impairment and fast high-frequency neurotransmitter release. J Neurosci Res. 2015;93(10):1492–506. doi:10.1002/jnr.23624.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bykhovskaia M. Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol. 2011;22(4):387–92. doi:10.1016/j.semcdb.2011.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cheetham JJ, Hilfiker S, Benfenati F, Weber T, Greengard P, Czernik AJ. Identification of synapsin I peptides that insert into lipid membrane. Biochem J. 2001;354(1):57–66. doi:10.1042/bj3540057.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cruceanu C, Kutsarova E, Chen ES, Checknita DR, Nagy C, Lopez JP, Alda M, Rouleau GA, Turecki G. DNA hypomethylation of synapsin II CpG islands associates with increased gene expression in bipolar disorder and major depression. BMC Psychiatry. 2016;16:286. doi:10.1186/s12888-016-0989-0.CrossRefPubMedPubMedCentralGoogle Scholar
  5. De Camilli P, Benfenati F, Valtorta F, Greengard P. The synapsins. Annu Rev Cell Biol. 1990;6:433–60. doi:10.1146/annurev.cb.06.110190.002245.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Giovedi S, Corradi A, Fassio A, Benfenati F. Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Pediatr. 2014;2(94):1–8. doi:10.3389/fped.2014.00094.CrossRefGoogle Scholar
  7. Gitler D, Takagashi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P. Augustine GJ. Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci. 2004;24(50):11368–80. http://dx.doi.org/10.1523/JNEUROSCI.3795-04.2004.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Hosaka M, Sudhof TC. Homo- and heterodimerization of synapsins. J Biol Chem. 1999;274(24):16747–53. doi:10.1074/jbc.274.24.16747.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Johnson EM, Ueda T, Maeno H, Greengard P. Adenosine 3′, 5-Monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. J Biol Chem. 1972;247(17):5650–2.PubMedPubMedCentralGoogle Scholar
  10. Kao H, Porton B, Hilfiker S, Stefani G, Pieribone VA, DeSalle R, Greengard P. Molecular evolution of the synapsin gene family. J Exp Zool. 1999;285:360–77. doi:10.1002/(SICI)1097-010X(19991215)285:4<360::AID-JEZ4>3.0.CO;2-3.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Molinaro L, Hui P, Tan M, Mishra RK. Role of presynaptic phosphoprotein synapsin II in schizophrenia. World J Psychiatry. 2015;5(3):260–72. doi:10.5498/wjp.v5.i3.260.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Petersohn D, Schoch S, Brinkmann DR, Thiel G. The human synapsin II gene promoter: Possible role for the transcription factors ZIF268/EGR-1, polyoma enhancer activator 3, and AP2. J Biol Chem. 1995;270(41):24361–9. doi:10.1074/jbc.270.41.24361.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Prasad DK, Shaheen U, Satyanarayana U, Prabha TS, Jyothy A, Munshi A. Association of GABRA6 1519 T > C (rs3219151) and synapsin II (rs37733634) gene polymorphisms with development of idiopathic generalized epilepsy. Epilepsy Res. 2014;108(8):1267–73. doi:10.1016/j.eplepsyres.2014.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Sudhof TC, Czernik AJ, Kao HT, Takei K, Johnston PA, Horiuchi A, Kanazir SD, Wagner MA, Perin MS, De Camilli P, et al. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science. 1989;245(4925):1474–80. doi:10.1126/science.2506642.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Tan M, Dyck BA, Gabriele J, Daya R, Thomas N, Sookram C, Basu D, Ferro MA, Mishra RK. Synapsin II gene expression in the dorsolateral prefrontal cortex of brain specimens from patients with schizophrenia and bipolar disorder: Effect of lifetime intake of antipsychotic drugs. Pharm J. 2014;14(1):63–9. doi:10.1038/tpj.2013.6.CrossRefGoogle Scholar
  16. Thiel G, Schoch S, Petersohn D. Regulation of synapsin I gene expression by zinc finger transcription factor zif268/egr-1. J Biochem. 1994;269(21):15294–301.Google Scholar
  17. Thiel G, Sudhof TC, Greengard P. SYN2. Mapping of a domain in the NH2-terminal region which binds to small synaptic vesicles. J Biol Chem. 1990;265(27):16527–33.PubMedPubMedCentralGoogle Scholar
  18. Walaas SI, Browning MD, Greengard P. Synapsin Ia, synapsin Ib, protein IIIa, and protein IIIb, four related synaptic vesicle-associated phosphoproteins, share regional and cellular localization in rat brain. J Neurochem. 1988;51(4):1214–20.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Wasylyk C, Flores P, Gutman A, Wakylyk B. PEA-3 is a nuclear target for transcription activation by non-nuclear oncogenes. EMBO J. 1989;8(11):3371–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Zheng Y, Li H, Qin W, Chen W, Duan Y, Xiao Y, Li C, Zhang J, Li X, Feng G, et al. Association of the carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase gene with schizophrenia in the Chinese Han population. Biochem Biophys Res Commun. 2005;328:809–15.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ashley Bernardo
    • 1
    Email author
  • Shreya Prashar
    • 1
  • Luke Molinaro
    • 1
  • Ram Mishra
    • 2
  1. 1.McMaster Integrative Neuroscience Discovery and StudyMcMaster UniversityHamiltonCanada
  2. 2.Psychiatry and Behavioural NeuroscienceMcMaster UniversityHamiltonCanada