Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Yoshiaki ItoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101825


 RUNX1: Runt-related transcription factor 1; AML1; Acute myeloid leukemia gene 1; PEBP2αB; Polyomavirus enhancer-binding protein 2 alpha B subunit; CBFA2; Core-binding factor subunit alpha-2

 RUNX2: Runt-related transcription factor 2; AML3; Acute myeloid leukemia gene 3; PEBP2αA; Polyomavirus enhancer-binding protein 2 alpha A subunit; CBFA1; Core-binding factor subunit alpha-3

 RUNX3: Runt-related transcription factor 3; AML2; Acute myeloid leukemia gene 2; PEBP2αC; Polyomavirus enhancer-binding protein 2 alpha C subunit; CBFA3; Core-binding factor subunit alpha-3

Historical Background

RUNX was discovered in the early 1990s by several independent studies. The first RUNX family member to be cloned, Drosophila runt, encodes nuclear protein with no known function and has roles in segmentation, sex determination, and neurogenesis (Kania et al. 1990). Shortly after that, the human RUNX1was sequenced as part of the t(8;21) (q22;q22) chromosomal translocation, a common recurrent...

This is a preview of subscription content, log in to check access.


  1. Bae SC, E-i T, Zhang YW, Ogawa E, Shigesada K, Namba Y, et al. Cloning, mapping and expression of PEBP2αC, a third gene encoding the mammalian Runt domain. Gene. 1995;159:245–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Blyth K, Cameron E, Neil J. The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer. 2005;5:376–87.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL, et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Mol Cell Biol. 2005;25:8097–107.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Collins A, Littman D, Taniuchi I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat Rev Immunol. 2009;9:106–15.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C, Whittaker CA, et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature. 2010;468:572–5.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Hanai J-i, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo WH, et al. Interaction and functional cooperation of PEBP2/CBF with Smads: synergistic induction of the immunoglobulin germline Cα promoter. J Biol Chem. 1999;274:31577–82.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ito Y. Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene. 2004;23:4198–208.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ito K, Lim ACB, Salto-Tellez M, Motoda L, Osato M, Chuang LSH, et al. RUNX3 attenuates β-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell. 2008;14:226–37.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ito Y, Bae SC, Chuang LSH. The RUNX family: developmental regulators in cancer. Nat Rev Cancer. 2015;15:81–95.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Junttila MR, Karnezis AN, Garcia D, Madriles F, Kortlever RM, Rostker F, et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature. 2010;468:567–71.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Kagoshima H, Shigesada K, Satake M, Ito Y, Miyoshi H, Ohki M, et al. The Runt domain identifies a new family of heterometric transcriptional regulators. Trends Genet. 1993;9:338–41.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Kania M, Bonner A, Duffy J, Gergen J. The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes Dev. 1990;4:1701–13.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet. 1997;16:307–10.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Lee YS, Lee JW, Jang JW, Chi XZ, Kim JH, Li YH, et al. Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell. 2013;24:603–16.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y. AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics. 1994;23:425–32.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Linggi B, Müller-Tidow C, van de Locht L, Hu M, Nip J, Serve H, et al. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med. 2002;8:743–50.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Liu P, Tarlé SA, Hajra A, Claxton DF, Marlton P, Freedman M, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science. 1993;261:1041–4.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA. 1991;88:10431–4.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, et al. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA. 1993a;90:6859–63.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, et al. Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila Runt-related DNA binding protein PEBP2 alpha. Virology. 1993b;194:314–31.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Okuda T, van Deursen J, Hiebert S, Grosveld G, Downing J. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–30.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Song W, Sullivan M, Legare R, Hutchings S, Tan S, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23:166–75.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2:502–13.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol. 1993;13:3324–39.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Weisenberger D, Siegmund K, Campan M, Young J, Long T, Faasse M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 1999;18:2551–62.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Cancer Science Institute of SingaporeNational University of Singapore, Centre for Translational MedicineSingaporeSingapore