Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Michy P. KellyEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101747

Historical Background

3′,5′-cyclic nucleotides (i.e., cAMP and cGMP) are intracellular signaling molecules that regulate a vast number of physiological processes, from cell-specific gene transcription to whole animal behavior (c.f., Neves et al. 2002; Francis et al. 2010). In order for cAMP and cGMP signaling to be effective, they must be tightly controlled. Although cyclic nucleotides are expressed in nearly every tissue, they are far from ubiquitously distributed. Cyclic nucleotides are actually confined to specific subcellular microdomains by a superfamily of enzymes known as the 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) (Francis et al. 2011; Edwards et al. 2012). PDEs are the only known enzymes to degrade cyclic nucleotides (Francis et al. 2011). By hydrolyzing cAMP and cGMP, PDEs not only control the total cellular content of cAMP and cGMP, they are responsible for restricting these cyclic nucleotides to their microdomains. It is this compartmentalization of cyclic...

This is a preview of subscription content, log in to check access.



The author thanks Jennifer Klett for technical assistance with Fig. 2a, Baher Ibrahim for technical assistance with Fig. 2b, Neema Patel for technical assistance with Fig. 3b, and William Capell for technical assistance with Fig. 3c. This work was funded by 1R01MH101130 from NIMH and a NARSAD Young Investigator Award from the Brain & Behavior Research Foundation (all awards to MPK).


  1. Alda M, Shao L, Wang JF, Lopez de Lara C, Jaitovich-Groisman I, Lebel V, et al. Alterations in phosphorylated cAMP response element-binding protein (pCREB) signaling: an endophenotype of lithium-responsive bipolar disorder? Bipolar Disord. 2013;15:824–31.  https://doi.org/10.1111/bdi.12131.CrossRefPubMedGoogle Scholar
  2. Avissar S, Schreiber G. The involvement of G proteins and regulators of receptor-G protein coupling in the pathophysiology, diagnosis and treatment of mood disorders. [Review] [109 refs]. Clin Chim Acta. 2006;366:37–47.CrossRefPubMedGoogle Scholar
  3. Avissar S, Nechamkin Y, Barki-Harrington L, Roitman G, Schreiber G. Differential G protein measures in mononuclear leukocytes of patients with bipolar mood disorder are state dependent. J Affect Disord. 1997;43:85–93.CrossRefPubMedGoogle Scholar
  4. Bast T, Feldon J. Hippocampal modulation of sensorimotor processes. Prog Neurobiol. 2003;70:319–45.CrossRefPubMedGoogle Scholar
  5. Bazhin AV, Kahnert S, Kimpfler S, Schadendorf D, Umansky V. Distinct metabolism of cyclic adenosine monophosphate in regulatory and helper CD4+ T cells. Mol Immunol. 2010;47:678–84.  https://doi.org/10.1016/j.molimm.2009.10.032.CrossRefPubMedGoogle Scholar
  6. Behrendt R-P. Neuroanatomy of social behavior: an evolutionary and psychoanalytic perspective. London: Karnac Books; 2011.Google Scholar
  7. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488–520.  https://doi.org/10.1124/pr.58.3.5.CrossRefPubMedGoogle Scholar
  8. Boikos SA, Horvath A, Heyerdahl S, Stein E, Robinson-White A, Bossis I, et al. Phosphodiesterase 11A expression in the adrenal cortex, primary pigmented nodular adrenocortical disease, and other corticotropin-independent lesions. Horm Metab Res. 2008;40:347–53.  https://doi.org/10.1055/s-2008-1076694.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bonkale WL, Cowburn RF, Ohm TG, Bogdanovic N, Fastbom J. A quantitative autoradiographic study of [3H]cAMP binding to cytosolic and particulate protein kinase A in post-mortem brain staged for Alzheimer’s disease neurofibrillary changes and amyloid deposits. Brain Res. 1999;818:383–96.CrossRefPubMedGoogle Scholar
  10. Brietzke E, Stertz L, Fernandes BS, Kauer-Sant’anna M, Mascarenhas M, Escosteguy Vargas A, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord. 2009;116:214–7.  https://doi.org/10.1016/j.jad.2008.12.001.CrossRefPubMedGoogle Scholar
  11. Cabanero M, Laje G, Detera-Wadleigh S, McMahon FJ. Association study of phosphodiesterase genes in the sequenced treatment alternatives to relieve depression sample. Pharmacogenet Genomics. 2009;19:235–8.  https://doi.org/10.1097/FPC.0b013e328320a3e2.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Capell WR, Fisher JL, Kelly MP. N-terminal phosphorylation alters the subcellular compartmentalization of PDE11A4. in preparation.Google Scholar
  13. Casebolt TL, Jope RS. Effects of chronic lithium treatment on protein kinase C and cyclic AMP-dependent protein phosphorylation. Biol Psychiatry. 1991;29:233–43.CrossRefPubMedGoogle Scholar
  14. Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N. Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron. 2016.  https://doi.org/10.1016/j.neuron.2015.12.013.
  15. Chang A, Li PP, Warsh JJ. Altered cAMP-dependent protein kinase subunit immunolabeling in post-mortem brain from patients with bipolar affective disorder.[erratum appears in J Neurochem. 2003 Apr;85(1):286.]. J Neurochem. 2003;84:781–91.CrossRefPubMedGoogle Scholar
  16. Coon H, Darlington T, Pimentel R, Smith KR, Huff CD, Hu H, et al. Genetic risk factors in two Utah pedigrees at high risk for suicide. Transl Psychiatry. 2013;3:e325.  https://doi.org/10.1038/tp.2013.100.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Couzin J. Science and commerce. Gene tests for psychiatric risk polarize researchers. Science. 2008;319:274–7.  https://doi.org/10.1126/science.319.5861.274.CrossRefPubMedGoogle Scholar
  18. DeWan AT, Triche EW, Xu X, Hsu LI, Zhao C, Belanger K, et al. PDE11A associations with asthma: results of a genome-wide association scan. J Allergy Clin Immunol. 2010;126:871-3 e9.  https://doi.org/10.1016/j.jaci.2010.06.051.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57.  https://doi.org/10.1016/j.biopsych.2009.09.033.CrossRefPubMedGoogle Scholar
  20. Dowlatshahi D, MacQueen GM, Wang JF, Reiach JS, Young LT. G protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at the time of death. J Neurochem. 1999;73:1121–6.CrossRefPubMedGoogle Scholar
  21. Ebstein RP, Knafo A, Mankuta D, Chew SH, Lai PS. The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm Behav. 2012;61:359–79.  https://doi.org/10.1016/j.yhbeh.2011.12.014.CrossRefPubMedGoogle Scholar
  22. Edwards HV, Christian F, Baillie GS. cAMP: novel concepts in compartmentalised signalling. Semin Cell Dev Biol. 2012;23:181–90.  https://doi.org/10.1016/j.semcdb.2011.09.005.CrossRefPubMedGoogle Scholar
  23. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19.  https://doi.org/10.1016/j.neuron.2009.11.031.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fatemi SH, Reutiman TJ, Folsom TD, Lee S. Phosphodiesterase-4A expression is reduced in cerebella of patients with bipolar disorder. Psychiatr Genet. 2008;18:282–8.CrossRefPubMedGoogle Scholar
  25. Fatemi SH, Folsom TD, Reutiman TJ, Vazquez G. Phosphodiesterase signaling system is disrupted in the cerebella of subjects with schizophrenia, bipolar disorder, and major depression. Schizophr Res. 2010;119:266–7.  https://doi.org/10.1016/j.schres.2010.02.1055.CrossRefPubMedGoogle Scholar
  26. Faucz FR, Horvath A, Rothenbuhler A, Almeida MQ, Libe R, Raffin-Sanson ML, et al. Phosphodiesterase 11A (PDE11A) genetic variants may increase susceptibility to prostatic cancer. J Clin Endocrinol Metab. 2011;96:E135–40.  https://doi.org/10.1210/jc.2010-1655.CrossRefPubMedGoogle Scholar
  27. Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I, Soderling S, et al. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc Natl Acad Sci U S A. 2000;97:3702–7.  https://doi.org/10.1073/pnas.050585197.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ferguson JN, Young LJ, Hearn EF, Matzuk MM, Insel TR, Winslow JT. Social amnesia in mice lacking the oxytocin gene. Nat Genet. 2000;25:284–8.  https://doi.org/10.1038/77040.CrossRefPubMedGoogle Scholar
  29. Fields A, Li PP, Kish SJ, Warsh JJ. Increased cyclic AMP-dependent protein kinase activity in postmortem brain from patients with bipolar affective disorder. J Neurochem. 1999;73:1704–10.CrossRefPubMedGoogle Scholar
  30. Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62:525–63.  https://doi.org/10.1124/pr.110.002907.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 2011;91:651–90.  https://doi.org/10.1152/physrev.00030.2010.CrossRefPubMedGoogle Scholar
  32. Gross-Langenhoff M, Hofbauer K, Weber J, Schultz A, Schultz JE. cAMP is a ligand for the tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain of phosphodiesterase 11. J Biol Chem. 2006;281:2841–6.  https://doi.org/10.1074/jbc.M511468200.CrossRefPubMedGoogle Scholar
  33. Gross-Langenhoff M, Stenzl A, Altenberend F, Schultz A, Schultz JE. The properties of phosphodiesterase 11A4 GAF domains are regulated by modifications in its N-terminal domain. FEBS J. 2008;275:1643–50.  https://doi.org/10.1111/j.1742-4658.2008.06319.x.CrossRefPubMedGoogle Scholar
  34. Gruber AJ, Calhoon GG, Shusterman I, Schoenbaum G, Roesch MR, O’Donnell P. More is less: a disinhibited prefrontal cortex impairs cognitive flexibility. J Neurosci. 2010;30:17102–10.  https://doi.org/10.1523/JNEUROSCI.4623-10.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gusev PA, Cui C, Alkon DL, Gubin AN. Topography of Arc/Arg3.1 mRNA expression in the dorsal and ventral hippocampus induced by recent and remote spatial memory recall: dissociation of CA3 and CA1 activation. J Neurosci. 2005;25:9384–97.CrossRefPubMedGoogle Scholar
  36. Hegde S, Capell WR, Ibrahim BA, Klett J, Patel NS, Sougiannis AT, et al. Phosphodiesterase 11A (PDE11A), enriched in ventral hippocampus neurons, is required for consolidation of social but not nonsocial memories in mice. Neuropsychopharmacology. 2016a;41:2920-31  https://doi.org/10.1038/npp.2016.106.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hegde S, Ji H, Oliver D, Patel NS, Poupore N, Shtutman M, et al. PDE11A regulates social behaviors and is a key mechanism by which social experience sculpts the brain. Neuroscience. 2016b;335:151–69.  https://doi.org/10.1016/j.neuroscience.2016.08.019.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Heikaus CC, Pandit J, Klevit RE. Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure. 2009;17:1551–7.  https://doi.org/10.1016/j.str.2009.07.019.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hetman JM, Robas N, Baxendale R, Fidock M, Phillips SC, Soderling SH, et al. Cloning and characterization of two splice variants of human phosphodiesterase 11A. Proc Natl Acad Sci U S A. 2000;97:12891–5.  https://doi.org/10.1073/pnas.200355397.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Horvath A, Giatzakis C, Robinson-White A, Boikos S, Levine E, Griffin K, et al. Adrenal hyperplasia and adenomas are associated with inhibition of phosphodiesterase 11A in carriers of PDE11A sequence variants that are frequent in the population. Cancer Res. 2006;66:11571–5.  https://doi.org/10.1158/0008-5472.CAN-06-2914.CrossRefPubMedGoogle Scholar
  41. Horvath A, Korde L, Greene MH, Libe R, Osorio P, Faucz FR, et al. Functional phosphodiesterase 11A mutations may modify the risk of familial and bilateral testicular germ cell tumors. Cancer Res. 2009;69:5301–6.  https://doi.org/10.1158/0008-5472.CAN-09-0884.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jager R, Russwurm C, Schwede F, Genieser HG, Koesling D, Russwurm M. Activation of PDE10 and PDE11 phosphodiesterases. J Biol Chem. 2012;287:1210–9.  https://doi.org/10.1074/jbc.M111.263806.CrossRefPubMedGoogle Scholar
  43. Jensen JB, Mork A. Altered protein phosphorylation in the rat brain following chronic lithium and carbamazepine treatments. Eur Neuropsychopharmacol. 1997;7:173–9.CrossRefPubMedGoogle Scholar
  44. Kelly MP. Putting together the pieces of phosphodiesterase distribution patterns in the brain: a jigsaw puzzle of cyclic nucleotide regulation. In: Brandon NJ, West AR, editors. Cyclic nucleotide phosphodiesterases in the central nervous system: from biology to disease. Hoboken: Wiley; 2014.Google Scholar
  45. Kelly MP. Does phosphodiesterase 11A (PDE11A) hold promise as a future therapeutic target? Curr Pharm Des. 2015;21:389–416.CrossRefPubMedGoogle Scholar
  46. Kelly MP. A role for PDE11A in the formation of social memories and the stabilization of mood. In: Xu J, Zhang H, O’Donnell JM, editors. Phosphodiesterases: CNS functions and diseases. Springer; in press.Google Scholar
  47. Kelly MP, Brandon NJ. Differential function of phosphodiesterase families in the brain: gaining insights through the use of genetically modified animals. Prog Brain Res. 2009;179:67–73.  https://doi.org/10.1016/S0079-6123(09)17908-6.CrossRefPubMedGoogle Scholar
  48. Kelly MP, Logue SF, Brennan J, Day JP, Lakkaraju S, Jiang L, et al. Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric disease-related phenotypes. Proc Natl Acad Sci U S A. 2010;107:8457–62.  https://doi.org/10.1073/pnas.1000730107.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, et al. Select 3′,5′-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal. 2014;26:383–97.  https://doi.org/10.1016/j.cellsig.2013.10.007.CrossRefPubMedGoogle Scholar
  50. Kelsoe J. Method to predict response to treatment for psychiatric illnesses. Oakland: The Regents of the University of California; 2010.Google Scholar
  51. Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterases (PDE) and peptide motifs. Curr Pharm Des. 2010;16:1114–25.CrossRefPubMedGoogle Scholar
  52. Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiat. 2014;71:1121–8.  https://doi.org/10.1001/jamapsychiatry.2014.1332.CrossRefGoogle Scholar
  53. Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59(6):367–74.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Libe R, Fratticci A, Coste J, Tissier F, Horvath A, Ragazzon B, et al. Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clin Cancer Res. 2008;14:4016–24.  https://doi.org/10.1158/1078-0432.CCR-08-0106.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Libe R, Horvath A, Vezzosi D, Fratticci A, Coste J, Perlemoine K, et al. Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with Carney complex (CNC) caused by PRKAR1A mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype. J Clin Endocrinol Metab. 2011;96:E208–14.  https://doi.org/10.1210/jc.2010-1704.CrossRefPubMedGoogle Scholar
  56. Lu JY, Sewer MB. p54nrb/NONO regulates cyclic AMP-dependent glucocorticoid production by modulating phosphodiesterase mRNA splicing and degradation. Mol Cell Biol. 2015;35:1223–37.  https://doi.org/10.1128/MCB.00993-14.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lukas M, Neumann ID. Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders. Behav Brain Res. 2013;251:85–94.  https://doi.org/10.1016/j.bbr.2012.08.011.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Luo HR, Wu GS, Dong C, Arcos-Burgos M, Ribeiro L, Licinio J, et al. Association of PDE11A global haplotype with major depression and antidepressant drug response. Neuropsychiatr Dis Treat. 2009;5:163–70.PubMedPubMedCentralGoogle Scholar
  59. Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res. 1995;29:141–52.CrossRefPubMedGoogle Scholar
  60. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine. 1997;9:853–8.  https://doi.org/10.1006/cyto.1997.0238.CrossRefPubMedGoogle Scholar
  61. Makhlouf A, Kshirsagar A, Niederberger C. Phosphodiesterase 11: a brief review of structure, expression and function. Int J Impot Res. 2006;18:501–9.  https://doi.org/10.1038/sj.ijir.3901441.CrossRefPubMedGoogle Scholar
  62. Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs. 2013;27:135–53.  https://doi.org/10.1007/s40263-013-0039-0.CrossRefPubMedGoogle Scholar
  63. Marquis JP, Goulet S, Dore FY. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats. Neurobiol Learn Mem. 2008;90:339–46.  https://doi.org/10.1016/j.nlm.2008.04.005.CrossRefPubMedGoogle Scholar
  64. Matthiesen K, Nielsen J. Binding of cyclic nucleotides to phosphodiesterase 10A and 11A GAF domains does not stimulate catalytic activity. Biochem J. 2009;423:401–9.  https://doi.org/10.1042/BJ20090982.CrossRefPubMedGoogle Scholar
  65. Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–9.  https://doi.org/10.1038/nature15526.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mirabello L, Kratz CP, Savage SA, Greene MH. Promoter methylation of candidate genes associated with familial testicular cancer. Int J Mol Epidemiol Genet. 2012;3:213–27.PubMedPubMedCentralGoogle Scholar
  67. Mori S, Tardito D, Dorigo A, Zanardi R, Smeraldi E, Racagni G, et al. Effects of lithium on cAMP-dependent protein kinase in rat brain. Neuropsychopharmacology. 1998;19:233–40.  https://doi.org/10.1016/S0893-133X(98)00018-9.CrossRefPubMedGoogle Scholar
  68. Moser MB, Moser EI. Functional differentiation in the hippocampus. Hippocampus. 1998;8:608–19.CrossRefPubMedGoogle Scholar
  69. Neves SR, Ram PT, Iyengar R. G protein pathways. Science. 2002;296:1636–9.  https://doi.org/10.1126/science.1071550.CrossRefPubMedGoogle Scholar
  70. Niculescu AB, Levey DF, Phalen PL, Le-Niculescu H, Dainton HD, Jain N, et al. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol Psychiatry. 2015.  https://doi.org/10.1038/mp.2015.112.
  71. Oki NO, Motsinger-Reif AA, Antas PR, Levy S, Holland SM, Sterling TR. Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study. BMC Res Notes. 2011;4:28.  https://doi.org/10.1186/1756-0500-4-28.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Papatheodoropoulos C, Kostopoulos G. Dorsal-ventral differentiation of short-term synaptic plasticity in rat CA1 hippocampal region. Neurosci Lett. 2000;286:57–60.CrossRefPubMedGoogle Scholar
  73. Pathak A, Stewart DR, Faucz FR, Xekouki P, Bass S, Vogt A, et al. Rare inactivating PDE11A variants associated with testicular germ cell tumors. Endocr Relat Cancer. 2015;22:909–17.  https://doi.org/10.1530/ERC-15-0034.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pathak G, Agostino MJ, Bishara K, Capell WR, Fisher JL, Hegde S, et al. PDE11A negatively regulates lithium responsivity. Mol Psychiatry. 2016.  https://doi.org/10.1038/mp.2016.155.
  75. Perlis RH, Fijal B, Dharia S, Heinloth AN, Houston JP. Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol Psychiatry. 2010;67:1110–3.  https://doi.org/10.1016/j.biopsych.2009.12.010.CrossRefPubMedGoogle Scholar
  76. Peverelli E, Ermetici F, Filopanti M, Elli FM, Ronchi CL, Mantovani G, et al. Analysis of genetic variants of phosphodiesterase 11A in acromegalic patients. Eur J Endocrinol/Eur Fed Endocr Soc. 2009;161:687–94.  https://doi.org/10.1530/EJE-09-0677.CrossRefGoogle Scholar
  77. Rahman S, Li PP, Young LT, Kofman O, Kish SJ, Warsh JJ. Reduced [3H]cyclic AMP binding in postmortem brain from subjects with bipolar affective disorder. J Neurochem. 1997;68:297–304.CrossRefPubMedGoogle Scholar
  78. Roman F, Soumireu-Mourat B. Behavioral dissociation of anterodorsal and posteroventral hippocampus by subseizure stimulation in mice. Brain Res. 1988;443:149–58.CrossRefPubMedGoogle Scholar
  79. Schreiber G, Avissar S. Lithium sensitive G protein hyperfunction: a dynamic model for the pathogenesis of bipolar affective disorder. Med Hypotheses. 1991;35:237–43.CrossRefPubMedGoogle Scholar
  80. Schreiber G, Avissar S, Danon A, Belmaker RH. Hyperfunctional G proteins in mononuclear leukocytes of patients with mania. Biol Psychiatry. 1991;29:273–80.CrossRefPubMedGoogle Scholar
  81. Simon NM, McNamara K, Chow CW, Maser RS, Papakostas GI, Pollack MH, et al. A detailed examination of cytokine abnormalities in major depressive disorder. Eur Neuropsychopharmacol. 2008;18:230–3.  https://doi.org/10.1016/j.euroneuro.2007.06.004.CrossRefPubMedGoogle Scholar
  82. Stoesz BM, Hare JF, Snow WM. Neurophysiological mechanisms underlying affiliative social behavior: insights from comparative research. Neurosci Biobehav Rev. 2013;37:123–32.  https://doi.org/10.1016/j.neubiorev.2012.11.007.CrossRefPubMedGoogle Scholar
  83. Sun X, Young LT, Wang JF, Grof P, Turecki G, Rouleau GA, et al. Identification of lithium-regulated genes in cultured lymphoblasts of lithium responsive subjects with bipolar disorder. Neuropsychopharmacology. 2004;29:799–804.  https://doi.org/10.1038/sj.npp.1300383.CrossRefPubMedGoogle Scholar
  84. Tipton LA, Christensen L, Blacher J. Friendship quality in adolescents with and without an intellectual disability. J Appl Res Intellect Disabil. 2013;26:522–32.  https://doi.org/10.1111/jar.12051.CrossRefPubMedGoogle Scholar
  85. Tseng KY, Lewis BL, Hashimoto T, Sesack SR, Kloc M, Lewis DA, et al. A neonatal ventral hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons. J Neurosci. 2008;28:12691–9.  https://doi.org/10.1523/JNEUROSCI.4166-08.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Vezzosi D, Libe R, Baudry C, Rizk-Rabin M, Horvath A, Levy I, et al. Phosphodiesterase 11A (PDE11A) gene defects in patients with acth-independent macronodular adrenal hyperplasia (AIMAH): functional variants may contribute to genetic susceptibility of bilateral adrenal tumors. J Clin Endocrinol Metab. 2012;97:E2063–9.  https://doi.org/10.1210/jc.2012-2275.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, et al. REVIEW: oxytocin: crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther. 2010;16:e138–56.  https://doi.org/10.1111/j.1755-5949.2010.00185.x.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Watanabe S, Iga J, Nishi A, Numata S, Kinoshita M, Kikuchi K, et al. Microarray analysis of global gene expression in leukocytes following lithium treatment. Hum Psychopharmacol. 2014;29:190–8.  https://doi.org/10.1002/hup.2381.CrossRefPubMedGoogle Scholar
  89. Weeks 2nd JL, Zoraghi R, Francis SH, Corbin JD. N-terminal domain of phosphodiesterase-11A4 (PDE11A4) decreases affinity of the catalytic site for substrates and tadalafil, and is involved in oligomerization. Biochemistry. 2007;46:10353–64.  https://doi.org/10.1021/bi7009629.CrossRefPubMedGoogle Scholar
  90. Weeks 2nd JL, Corbin JD, Francis SH. Interactions between cyclic nucleotide phosphodiesterase 11 catalytic site and substrates or tadalafil and role of a critical Gln-869 hydrogen bond. J Pharmacol Exp Ther. 2009;331:133–41.  https://doi.org/10.1124/jpet.109.156935.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Witwicka H, Kobialka M, Siednienko J, Mitkiewicz M, Gorczyca WA. Expression and activity of cGMP-dependent phosphodiesterases is up-regulated by lipopolysaccharide (LPS) in rat peritoneal macrophages. Biochim Biophys Acta. 2007;1773:209–18.  https://doi.org/10.1016/j.bbamcr.2006.10.008.CrossRefPubMedGoogle Scholar
  92. Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, Cantor RM, et al. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc Natl Acad Sci U S A. 2006;103:15124–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Xu Y, Zhang HT, O’Donnell JM. Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol. 2011;447–85.  https://doi.org/10.1007/978-3-642-17969-3_19.
  94. Yuasa K, Kotera J, Fujishige K, Michibata H, Sasaki T, Omori K. Isolation and characterization of two novel phosphodiesterase PDE11A variants showing unique structure and tissue-specific expression. J Biol Chem. 2000;275:31469–79.  https://doi.org/10.1074/jbc.M003041200.CrossRefPubMedGoogle Scholar
  95. Yuasa K, Kanoh Y, Okumura K, Omori K. Genomic organization of the human phosphodiesterase PDE11A gene. Evolutionary relatedness with other PDEs containing GAF domains. Eur J Biochem/FEBS. 2001a;268:168–78.CrossRefGoogle Scholar
  96. Yuasa K, Ohgaru T, Asahina M, Omori K. Identification of rat cyclic nucleotide phosphodiesterase 11A (PDE11A): comparison of rat and human PDE11A splicing variants. Eur J Biochem/FEBS. 2001b;268:4440–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pharmacology, Physiology and NeuroscienceUniversity of South Carolina School of MedicineColumbiaUSA