Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Ezrin

  • Neetu Gupta
  • Mala Upadhyay
  • Michael Cheung
  • Nabanita Bhunia
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101745

Synonyms

Historical Background

The ERM family of proteins is composed of Ezrin, Radixin, and Moesin. ERM proteins regulate the linkage of cortical actin to membrane-associated proteins in cellular substructures by directly binding to both. Ezrin is the most studied of all ERM proteins and was identified as an 81 kDa substrate protein for receptor tyrosine kinase in A431 carcinoma cell lines (Hunter and Cooper 1981). Subsequently, it was purified as an 80 kDa protein from intestinal microvilli (Bretscher 1983). In an independent study, when an antibody was used against a 75 kDa synthetic peptide derived from cloned human endogenous retrovirus gag-related DNA sequence erv1, a protein named cytovilin was identified (Suni et al. 1984). It was found to be enriched in microvilli (Pakkanen and Vaheri 1989; Pakkanen et al. 1987) and identical to ezrin (Gould et al. 1989).

Structure, Expression, and Conformational Regulation

Gene and Domain Organization

Human ezrin...
This is a preview of subscription content, log in to check access.

References

  1. Abbal C, Lambelet M, Bertaggia D, Gerbex C, Martinez M, Arcaro A, et al. Lipid raft adhesion receptors and Syk regulate selectin-dependent rolling under flow conditions. Blood. 2006;108(10):3352–9.CrossRefPubMedGoogle Scholar
  2. Allenspach EJ, Cullinan P, Tong J, Tang Q, Tesciuba AG, Cannon JL, et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity. 2001;15(5):739–50.CrossRefPubMedGoogle Scholar
  3. Alonso-Lebrero JL, Serrador JM, Dominguez-Jimenez C, Barreiro O, Luque A, del Pozo MA, et al. Polarization and interaction of adhesion molecules P-selectin glycoprotein ligand 1 and intercellular adhesion molecule 3 with moesin and ezrin in myeloid cells. Blood. 2000;95(7):2413–9.PubMedGoogle Scholar
  4. Amieva MR, Wilgenbus KK, Furthmayr H. Radixin is a component of hepatocyte microvilli in situ. Exp Cell Res. 1994;210(1):140–4.CrossRefPubMedGoogle Scholar
  5. Barreiro O, Yáñez-Mó M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol. 2002;157(7):1233–45.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Belkina NV, Liu Y, Hao JJ, Karasuyama H, Shaw S. LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylation. Proc Natl Acad Sci USA. 2009;106(12):4707–12.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berryman M, Franck Z, Bretscher A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci. 1993;105(Pt 4):1025–43.PubMedGoogle Scholar
  8. Berryman M, Gary R, Bretscher A. Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J Cell Biol. 1995;131(5):1231–42.CrossRefPubMedGoogle Scholar
  9. Bretscher A. Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol. 1983;97(2):425–32.CrossRefPubMedGoogle Scholar
  10. Bretscher A, Gary R, Berryman M. Soluble ezrin purified from placenta exists as stable monomers and elongated dimers with masked C-terminal ezrin-radixin-moesin association domains. Biochemistry. 1995;34(51):16830–7.CrossRefPubMedGoogle Scholar
  11. Bruce B, Khanna G, Ren L, Landberg G, Jirstrom K, Powell C, et al. Expression of the cytoskeleton linker protein ezrin in human cancers. Clin Exp Metastasis. 2007;24(2):69–78.CrossRefPubMedGoogle Scholar
  12. Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991;67(6):1033–6.CrossRefPubMedGoogle Scholar
  13. Celik H, Bulut G, Han J, Graham GT, Minas TZ, Conn EJ, et al. Ezrin inhibition up-regulates stress response gene expression. J Biol Chem. 2016;291(25):13257–70.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H, et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci. 1998;23(8):281–2.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chuan YC, Iglesias-Gato D, Fernandez-Perez L, Cedazo-Minguez A, Pang ST, Norstedt G, et al. Ezrin mediates c-Myc actions in prostate cancer cell invasion. Oncogene. 2010;29(10):1531–42.CrossRefPubMedGoogle Scholar
  16. Clucas J, Valderrama F. ERM proteins in cancer progression. J Cell Sci. 2015;128(6):1253.CrossRefPubMedGoogle Scholar
  17. Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH. Platelet-mediated lymphocyte delivery to high endothelial venules. Science. 1996;273(5272):252–5.CrossRefPubMedGoogle Scholar
  18. Dransfield DT, Bradford AJ, Smith J, Martin M, Roy C, Mangeat PH, et al. Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. EMBO J. 1997;16(1):35–43.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Erwig L-P, McPhilips KA, Wynes MW, Ivetic A, Ridley AJ, Henson PM. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin–radixin–moesin (ERM) proteins. Proc Natl Acad Sci U S A. 2006;103(34):12825–30.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Faure S, Salazar-Fontana LI, Semichon M, Tybulewicz VL, Bismuth G, Trautmann A, et al. ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat Immunol. 2004;5(3):272–9.CrossRefPubMedGoogle Scholar
  21. Funayama N, Nagafuchi A, Sato N, Tsukita S. Radixin is a novel member of the band 4.1 family. J Cell Biol. 1991;115(4):1039–48.CrossRefPubMedGoogle Scholar
  22. Gary R, Bretscher A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell. 1995;6(8):1061–75.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gautreau A, Poullet P, Louvard D, Arpin M. Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci U S A. 1999;96(13):7300–5.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ghaffari A, Hoskin V, Szeto A, Hum M, Liaghati N, Nakatsu K, et al. A novel role for ezrin in breast cancer angio/lymphangiogenesis. Breast Cancer Res. 2014;16(5):438.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gould KL, Bretscher A, Esch FS, Hunter T. cDNA cloning and sequencing of the protein-tyrosine kinase substrate, ezrin, reveals homology to band 4.1. EMBO J. 1989;8(13):4133–42.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Granes F, Urena JM, Rocamora N, Vilaro S. Ezrin links syndecan-2 to the cytoskeleton. J Cell Sci. 2000;113(Pt 7):1267–76.PubMedGoogle Scholar
  27. Gupta N, Wollscheid B, Watts JD, Scheer B, Aebersold R, DeFranco AL. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol. 2006;7(6):625–33.CrossRefGoogle Scholar
  28. Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A, Carpen O. Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem. 1998;273(34):21893–900.CrossRefPubMedGoogle Scholar
  29. Helander TS, Carpen O, Turunen O, Kovanen PE, Vaheri A, Timonen T. ICAM-2 redistributed by ezrin as a target for killer cells. Nature. 1996;382(6588):265–8.CrossRefPubMedGoogle Scholar
  30. Hunter T, Cooper JA. Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell. 1981;24(3):741–52.CrossRefPubMedGoogle Scholar
  31. Ilani T, Khanna C, Zhou M, Veenstra TD, Bretscher A. Immune synapse formation requires ZAP-70 recruitment by ezrin and CD43 removal by moesin. J Cell Biol. 2007;179(4):733–46.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996;88(9):3259.PubMedGoogle Scholar
  33. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10(2):182–6.CrossRefPubMedGoogle Scholar
  34. Krieg J, Hunter T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Biol Chem. 1992;267(27):19258–65.PubMedGoogle Scholar
  35. Kumar R, Ferez M, Swamy M, Arechaga I, Rejas MT, Valpuesta JM, et al. Increased sensitivity of antigen-experienced T cells through the enrichment of oligomeric T cell receptor complexes. Immunity. 2011;35(3):375–87.CrossRefPubMedGoogle Scholar
  36. Lam EK, Wang X, Shin VY, Zhang S, Morrison H, Sun J, et al. A microRNA contribution to aberrant Ras activation in gastric cancer. Am J Transl Res. 2011;3(2):209–18.PubMedPubMedCentralGoogle Scholar
  37. Li L, Wang YY, Zhao ZS, Ma J. Ezrin is associated with gastric cancer progression and prognosis. Pathol Oncol Res. 2011;17(4):909–15.CrossRefPubMedGoogle Scholar
  38. Martin M, Roy C, Montcourrier P, Sahuquet A, Mangeat P. Three determinants in ezrin are responsible for cell extension activity. Mol Biol Cell. 1997;8(8):1543–57.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Martinelli S, Chen EJ, Clarke F, Lyck R, Affentranger S, Burkhardt JK, et al. Ezrin/radixin/moesin proteins and flotillins cooperate to promote uropod formation in T cells. Front Immunol. 2013;4:84.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol. 1998;140(3):647–57.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Nakamura N, Oshiro N, Fukata Y, Amano M, Fukata M, Kuroda S, et al. Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes Cells. 2000;5(7):571–81.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Oshiro N, Fukata Y, Kaibuchi K. Phosphorylation of moesin by rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J Biol Chem. 1998;273(52):34663–6.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Pakkanen R, Vaheri A. Cytovillin and other microvillar proteins of human choriocarcinoma cells. J Cell Biochem. 1989;41(1):1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Pakkanen R, Hedman K, Turunen O, Wahlstrom T, Vaheri A. Microvillus-specific Mr 75,000 plasma membrane protein of human choriocarcinoma cells. J Histochem Cytochem. 1987;35(8):809–16.CrossRefPubMedGoogle Scholar
  45. Parameswaran N, Gupta N. Re-defining ERM function in lymphocyte activation and migration. Immunol Rev. 2013;256(1):63–79.CrossRefPubMedGoogle Scholar
  46. Parameswaran N, Matsui K, Gupta N. Conformational switching in ezrin regulates morphological and cytoskeletal changes required for B cell chemotaxis. J Immunol. 2011;186(7):4088–97.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Parameswaran N, Enyindah-Asonye G, Bagheri N, Shah NB, Gupta N. Spatial coupling of JNK activation to the B cell antigen receptor by tyrosine-phosphorylated ezrin. J Immunol. 2013;190(5):2017–26.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Pietromonaco SF, Simons PC, Altman A, Elias L. Protein kinase C-theta phosphorylation of moesin in the actin-binding sequence. J Biol Chem. 1998;273(13):7594–603.CrossRefPubMedGoogle Scholar
  49. Pore D, Parameswaran N, Matsui K, Stone MB, Saotome I, McClatchey AI, et al. Ezrin tunes the magnitude of humoral immunity. J Immunol. 2013;191(8):4048–58.CrossRefPubMedGoogle Scholar
  50. Pore D, Bodo J, Danda A, Yan D, Phillips JG, Lindner D, et al. Identification of ezrin-radixin-moesin proteins as novel regulators of pathogenic B-cell receptor signaling and tumor growth in diffuse large B-cell lymphoma. Leukemia. 2015;29(9):1857–67.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Pore D, Matsui K, Parameswaran N, Gupta N. Cutting edge: ezrin regulates inflammation by limiting B cell IL-10 production. J Immunol. 2016;196(2):558–62.CrossRefPubMedGoogle Scholar
  52. Pujuguet P, Del Maestro L, Gautreau A, Louvard D, Arpin M. Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol Biol Cell. 2003;14(5):2181–91.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Reczek D, Berryman M, Bretscher A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol. 1997;139(1):169–79.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ren L, Khanna C. Role of ezrin in osteosarcoma metastasis. Adv Exp Med Biol. 2014;804:181–201.CrossRefPubMedGoogle Scholar
  55. Rossy J, Schlicht D, Engelhardt B, Niggli V. Flotillins interact with psgl-1 in neutrophils and, upon stimulation, rapidly organize into membrane domains subsequently accumulating in the uropod. PLoS One. 2009;4(4):e5403.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Roy C, Martin M, Mangeat P. A dual involvement of the amino-terminal domain of ezrin in F- and G-actin binding. J Biol Chem. 1997;272(32):20088–95.CrossRefPubMedGoogle Scholar
  57. Shaffer MH, Dupree RS, Zhu P, Saotome I, Schmidt RF, McClatchey AI, et al. Ezrin and moesin function together to promote T cell activation. J Immunol. 2009;182(2):1021–32.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Sherman E, Barr V, Manley S, Patterson G, Balagopalan L, Akpan I, et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity. 2011;35(5):705–20.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Snapp KR, Heitzig CE, Kansas GS. Attachment of the PSGL-1 cytoplasmic domain to the actin cytoskeleton is essential for leukocyte rolling on P-selectin. Blood. 2002;99(12):4494–502.CrossRefPubMedGoogle Scholar
  60. Spertini C, Baïsse B, Spertini O. Ezrin-radixin-moesin-binding sequence of psgl-1 glycoprotein regulates leukocyte rolling on selectins and activation of extracellular signal-regulated kinases. J Biol Chem. 2012;287(13):10693–702.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Srivastava J, Elliott BE, Louvard D, Arpin M. Src-dependent ezrin phosphorylation in adhesion-mediated signaling. Mol Biol Cell. 2005;16(3):1481–90.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Suni J, Narvanen A, Wahlstrom T, Aho M, Pakkanen R, Vaheri A, et al. Human placental syncytiotrophoblastic Mr 75,000 polypeptide defined by antibodies to a synthetic peptide based on a cloned human endogenous retroviral DNA sequence. Proc Natl Acad Sci USA. 1984;81(19):6197–201.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Takahashi K, Sasaki T, Mammoto A, Takaishi K, Kameyama T, Tsukita S, et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem. 1997;272(37):23371–5.CrossRefPubMedGoogle Scholar
  64. Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, et al. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity. 2010;32(2):187–99.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Treanor B, Depoil D, Bruckbauer A, Batista FD. Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med. 2011;208(5):1055–68.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Tsukita S, Oishi K, Sato N, Sagara J, Kawai A. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol. 1994;126(2):391–401.CrossRefPubMedGoogle Scholar
  67. Urzainqui A, Serrador JM, Viedma F, Yanez-Mo M, Rodriguez A, Corbi AL, et al. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity. 2002;17(4):401–12.CrossRefPubMedGoogle Scholar
  68. Yao X, Cheng L, Forte JG. Biochemical characterization of ezrin-actin interaction. J Biol Chem. 1996;271(12):7224–9.CrossRefPubMedGoogle Scholar
  69. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med. 2004;10(2):175–81.CrossRefPubMedGoogle Scholar
  70. Zhou R, Cao X, Watson C, Miao Y, Guo Z, Forte JG, et al. Characterization of protein kinase A-mediated phosphorylation of ezrin in gastric parietal cell activation. J Biol Chem. 2003;278(37):35651–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Neetu Gupta
    • 1
  • Mala Upadhyay
    • 2
  • Michael Cheung
    • 2
  • Nabanita Bhunia
    • 2
  1. 1.Department of Immunology, Lerner Research InstituteCleveland Clinic FoundationClevelandUSA
  2. 2.Department of ImmunologyCleveland Clinic FoundationClevelandUSA