Skip to main content

p57

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

CDKN1C; Cyclin-dependent kinase inhibitor 1C; KIP2; p57Kip2

Historical Background

The protein p57Kip2 (hereafter called p57) was independently identified by two groups in 1995. It belongs to the family of cyclin-dependent kinase inhibitor (CKI) CIP/KIP along with p21Cip1 (hereafter called p21) and p27Kip1 (hereafter called p27). The role of this CKI family is to inhibit cell cycle progression by binding to cyclin D-CDK4/CDK6 and cyclin E/cyclin A-CDK2 complexes (Lee et al. 1995; Matsuoka et al. 1995). Studies from knockout (KO) mice in late 1990s revealed that CIP/KIP members exert only partially overlapping functions. In particular, while mice lacking p21 or p27 are viable, p57 KO mice are characterized by perinatal lethality and severe developmental defects. Moreover, the knock-in of p27 in p57 KO mice only partially overcomes the phenotype (Yan et al. 1997; Susaki et al. 2009).

While p21 and p27 have a wide tissue distribution, p57 expression is strictly regulated. The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avrahami D, Li C, Yu M, Jiao Y, Zhang J, Naji A, Ziaie S, Glaser B, Kaestner KH. Targeting the cell cycle inhibitor p57Kip2 promotes adult human β cell replication. J Clin Invest. 2014;124:670–4. doi:10.1172/JCI69519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Billing M, Rörby E, May G, Tipping AJ, Soneji S, Brown J, Salminen M, Karlsson G, Enver T, Karlsson S. A network including TGFβ/Smad4, Gata2, and p57 regulates proliferation of mouse hematopoietic progenitor cells. Exp Hematol. 2016;44:399–409.e5. doi:10.1016/j.exphem.2016.02.001.

    Article  PubMed  CAS  Google Scholar 

  • Busanello A, Battistelli C, Carbone M, Mostocotto C, Maione R. MyoD regulates p57kip2 expression by interacting with a distant cis-element and modifying a higher order chromatin structure. Nucleic Acids Res. 2012;40:8266–75. doi:10.1093/nar/gks619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E, Kitajewski J, Arenas E. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci USA. 2003;100:12747–52. doi:10.1073/pnas.1534900100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang T-S, Kim MJ, Ryoo K, Park J, Eom S-J, Shim J, Nakayama KI, Nakayama K, Tomita M, Takahashi K, Lee M-J, Choi E-J. p57KIP2 modulates stress-activated signaling by inhibiting c-Jun NH2-terminal kinase/stress-activated protein Kinase. J Biol Chem. 2003;278:48092–8. doi:10.1074/jbc.M309421200.

    Article  PubMed  CAS  Google Scholar 

  • Dias RP, Maher ER. An imprinted IMAGe: insights into growth regulation through genomic analysis of a rare disease. Genome Med. 2012;4:60. doi:10.1186/gm361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eggermann T, Binder G, Brioude F, Maher ER, Lapunzina P, Cubellis MV, Bergadá I, Prawitt D, Begemann M. CDKN1C mutations: two sides of the same coin. Trends Mol Med. 2014;20:614–22. doi:10.1016/j.molmed.2014.09.001.

    Article  PubMed  CAS  Google Scholar 

  • Figliola R, Busanello A, Vaccarello G, Maione R. Regulation of p57(KIP2) during muscle differentiation: role of Egr1, Sp1 and DNA hypomethylation. J Mol Biol. 2008;380:265–77. doi:10.1016/j.jmb.2008.05.004.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Kohri K, Kaneko Y, Morisaki H, Kato T, Ikeda K, Nakanishi M. Critical role for the 310 helix region of p57(Kip2) in cyclin-dependent kinase 2 inhibition and growth suppression. J Biol Chem. 1998;273:16544–50.

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Cong Q, Chua JFL, Liu H, Xia X, Zhang X, Lin J, Habib SL, Ao J, Zuo Q, Fu C, Li B. p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance. Oncogene. 2015; 34(27):3568–81.

    Article  PubMed  CAS  Google Scholar 

  • Joseph B, Andersson ER, Vlachos P, Södersten E, Liu L, Teixeira AI, Hermanson O. p57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neural stem cells. Cell Death Differ. 2009;16:1256–65. doi:10.1038/cdd.2009.72.

    Article  PubMed  CAS  Google Scholar 

  • Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes. 2000;49:1325–33.

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh E, Vlachos P, Emourgeon V, Rodhe J, Joseph B. p57(KIP2) control of actin cytoskeleton dynamics is responsible for its mitochondrial pro-apoptotic effect. Cell Death Dis. 2012;3:e311. doi:10.1038/cddis.2012.51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee MH, Reynisdóttir I, Massagué J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 1995;9:639–49.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995;9:650–62.

    Article  CAS  PubMed  Google Scholar 

  • Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG. p57KIP2: “Kip”ing the Cell under Control. Mol Cancer Res. 2009;7:1902–19. doi:10.1158/1541-7786.MCR-09-0317.

    Article  PubMed  CAS  Google Scholar 

  • Reynaud EG, Leibovitch MP, Tintignac LA, Pelpel K, Guillier M, Leibovitch SA. Stabilization of MyoD by direct binding to p57(Kip2). J Biol Chem. 2000;275:18767–76. doi:10.1074/jbc.M907412199.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez BAT, Weng Y-I, Liu T-M, Zuo T, Hsu P-Y, Lin C-H, Cheng A-L, Cui H, Yan PS, Huang TH-M. Estrogen-mediated epigenetic repression of the imprinted gene cyclin-dependent kinase inhibitor 1C in breast cancer cells. Carcinogenesis. 2011;32:812–21. doi:10.1093/carcin/bgr017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossi MN, Antonangeli F. Cellular response upon stress: p57 contribution to the final outcome. Mediators Inflamm. 2015;1–9. doi:10.1155/2015/259325.

    Article  CAS  Google Scholar 

  • Salomon A, Keramidas M, Maisin C, Thomas M. Loss of β-catenin in adrenocortical cancer cells causes growth inhibition and reversal of epithelial-to-mesenchymal transition. Oncotarget. 2015;6:11421–33. doi:10.18632/oncotarget.3222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scandura JM, Boccuni P, Massagué J, Nimer SD. Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci. USA. 2004;101:15231–6. doi:10.1073/pnas.0406771101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin J-Y, Fitzpatrick GV, Higgins MJ. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J. 2008;27:168–78. doi:10.1038/sj.emboj.7601960.

    Article  PubMed  CAS  Google Scholar 

  • Susaki E, Nakayama K, Yamasaki L, Nakayama KI. Common and specific roles of the related CDK inhibitors p27 and p57 revealed by a knock-in mouse model. Proc Natl Acad Sci USA. 2009;106:5192–7. doi:10.1073/pnas.0811712106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Travers ME, Mackay DJG, Dekker Nitert M, Morris AP, Lindgren CM, Berry A, Johnson PR, Hanley N, Groop LC, McCarthy MI, Gloyn AL. Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes. 2013;62:987–92. doi:10.2337/db12-0819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y. Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci USA. 1998;95:1392–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worster DT, Schmelzle T, Solimini NL, Lightcap ES, Millard B, Mills GB, Brugge JS, Albeck JG. Akt and ERK control the proliferative response of mammary epithelial cells to the growth factors IGF-1 and EGF through the cell cycle inhibitor p57Kip2. Sci Signal. 2012;5:ra19. doi:10.1126/scisignal.2001986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Frisen J, Lee MH, Massague J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 1997 Apr 15;11(8):973–83. PubMed PMID: 9136926.

    Article  CAS  Google Scholar 

  • Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y, Yamagata K, Hinokio Y, Wang H-Y, Tanahashi T, Nakamura N, Oka Y, Iwasaki N, Iwamoto Y, Yamada Y, Seino Y, Maegawa H, Kashiwagi A, Takeda J, Maeda E, Shin HD, Cho YM, Park KS, Lee HK, Ng MCY, Ma RCW, So W-Y, Chan JCN, Lyssenko V, Tuomi T, Nilsson P, Groop L, Kamatani N, Sekine A, Nakamura Y, Yamamoto K, Yoshida T, Tokunaga K, Itakura M, Makino H, Nanjo K, Kadowaki T, Kasuga M. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7. doi:10.1038/ng.207.

    Article  PubMed  CAS  Google Scholar 

  • Yokoo T, Toyoshima H, Miura M, Wang Y, Iida KT, Suzuki H, Sone H, Shimano H, Gotoda T, Nishimori S, Tanaka K, Yamada N. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus. J Biol Chem. 2003;278:52919–23. doi:10.1074/jbc.M309334200.

    Article  PubMed  CAS  Google Scholar 

  • Zalc A, Hayashi S, Auradé F, Bröhl D, Chang T, Mademtzoglou D, Mourikis P, Yao Z, Cao Y, Birchmeier C, Relaix F. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest. Dev Camb Engl. 2014;141:2780–90. doi:10.1242/dev.110155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Nicoletta Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rossi, M.N. (2018). p57. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101730

Download citation

Publish with us

Policies and ethics