Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

MORG1 (Mitogen-Activated Protein Kinase Organizer 1)

  • Ivonne Loeffler
  • Gunter Wolf
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101683

Synonyms

Historical Background

Mitogen-activated protein kinase organizer 1 (MORG1), also known as WDR83, is a member of the WD-40 domain protein family (Vomastek et al. 2004). The WD-40 domain exhibits a β-propeller architecture and is one of the most abundant domains and also among the top interacting domains in eukaryotic genomes (Xu and Min 2011). The WD-40 domain proteins function as an adaptor in many different protein complexes or protein-DNA complexes in very diverse cellular processes (Xu and Min 2011). Analysis of the mouse cDNA sequence showed that MORG1 is a protein of 315 amino acids composed almost entirely of seven WD-40 domains with a molecular mass of 34.5 kDa (Fig. 1) (Vomastek et al. 2004). Mammalian MORG1 shares >50% amino acid sequence identity with proteins of Drosophila melanogaster and Caenorhabditis elegans and is ubiquitously expressed, with abundant amounts in the heart, brain, liver, kidney, and testis (Vomastek et al. 2004)....
This is a preview of subscription content, log in to check access.

References

  1. Boggiatto PM, Martinez PA, Pullikuth A, Jones DE, Bellaire B, Catling A, Petersen C. Targeted extracellular signal-regulated kinase activation mediated by Leishmania amazonensis requires MP1 scaffold. Microbes Infect/Institut Pasteur. 2014;16(4):328–36 .PubMed PMID: 24463270. Pubmed Central PMCID: 4023638CrossRefGoogle Scholar
  2. Bondeva T, Heinzig J, Franke S, Wolf G. Angiotensin II differentially regulates Morg1 expression in kidney cells. Am J Nephrol. 2012;35(5):442–55.CrossRefPubMedGoogle Scholar
  3. Bondeva T, Heinzig J, Ruhe C, Wolf G. Advanced glycated end-products affect HIF-transcriptional activity in renal cells. Mol Endocrinol. 2013;27(11):1918–33.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Haase D, Keiner S, Mawrin C, Wolf G. Reduced Morg1 expression in ischemic human brain. Neurosci Lett. 2009;455(1):46–50.CrossRefPubMedGoogle Scholar
  5. Hammerschmidt E, Loeffler I, Wolf G. Morg1 heterozygous mice are protected from acute renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2009;297(5):F1273–87.CrossRefPubMedGoogle Scholar
  6. Hayase J, Kamakura S, Iwakiri Y, Yamaguchi Y, Izaki T, Ito T, Sumimoto H. The WD40 protein Morg1 facilitates Par6-aPKC binding to Crb3 for apical identity in epithelial cells. J Cell Biol. 2013;200(5):635–50.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Hegele A, Kamburov A, Grossmann A, Sourlis C, Wowro S, Weimann M, Will CL, Pena V, Luhrmann R, Stelzl U. Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell. 2012;45(4):567–80.CrossRefPubMedGoogle Scholar
  8. Hopfer U, Hopfer H, Jablonski K, Stahl RA, Wolf G. The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3). J Biol Chem. 2006;281(13):8645–55.CrossRefPubMedGoogle Scholar
  9. Loeffler I, Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells. 2015a;4(4):631–52.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Loeffler I, Wolf G. Morg1 heterozygous deficiency ameliorates hypoxia-induced acute renal injury. Am J Physiol Renal Physiol. 2015b;308(6):F511–21.CrossRefPubMedGoogle Scholar
  11. Loeffler I, Wolf G. The role of hypoxia and Morg1 in renal injury. Eur J Clin Investig. 2015c;45(3):294–302.CrossRefGoogle Scholar
  12. Lyon SM, Waggoner D, Halbach S, Thorland EC, Khorasani L, Reid RR. Syndromic craniosynostosis associated with microdeletion of chromosome 19p13.12-19p13.2. Genes Dis. 2015;2(4):347–52. PubMed PMID: 26966713. Pubmed Central PMCID: 4782977PubMedPubMedCentralCrossRefGoogle Scholar
  13. Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science. 1998;281(5383):1668–71.CrossRefPubMedGoogle Scholar
  14. Stahr A, Frahm C, Kretz A, Bondeva T, Witte OW, Wolf G. Morg1(+/−) heterozygous mice are protected from experimentally induced focal cerebral ischemia. Brain Res. 2012;1482:22–31.CrossRefPubMedGoogle Scholar
  15. Su WY, Xiong H, Fang JY. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem Biophys Res Commun. 2010;396(2):177–81.CrossRefPubMedGoogle Scholar
  16. Su WY, Li JT, Cui Y, Hong J, Du W, Wang YC, Lin YW, Xiong H, Wang JL, Kong X, Gao QY, Wei LP, Fang JY. Bidirectional regulation between WDR83 and its natural antisense transcript DHPS in gastric cancer. Cell Res. 2012;22(9):1374–89.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Teis D, Taub N, Kurzbauer R, Hilber D, de Araujo ME, Erlacher M, Offterdinger M, Villunger A, Geley S, Bohn G, Klein C, Hess MW, Huber LA. p14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J Cell Biol. 2006;175(6):861–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Vomastek T, Schaeffer HJ, Tarcsafalvi A, Smolkin ME, Bissonette EA, Weber MJ. Modular construction of a signaling scaffold: MORG1 interacts with components of the ERK cascade and links ERK signaling to specific agonists. Proc Natl Acad Sci U S A. 2004;101(18):6981–6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell. 2011;2(3):202–14.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Zambonelli P, Davoli R, Bigi M, Braglia S, De Paolis LF, Buttazzoni L, Gallo M, Russo V. SNPs detection in DHPS-WDR83 overlapping genes mapping on porcine chromosome 2 in a QTL region for meat pH. BMC Genet. 2013;14(99).PubMedPubMedCentralCrossRefGoogle Scholar
  21. Zhang L, Wang LS, Xu Y, Xia L, Chen WL, Zheng Y, Chen GQ. Comparative proteomic analysis of human leukemic cells with and without inducible expression of leukemogenic AML1-ETO protein. Chinese J Physiol. 2006;49(4):182–91.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Internal Medicine IIIUniversity Hospital JenaJenaGermany