Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

PITX2 (Pituitary Homeobox Gene 2)

  • Diego FrancoEmail author
  • Amelia Aranega
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101670


 Arp1;  Brx1;  Munc30;  Otlx2;  Ptx2;  Rieg

Historical Background

PITX2 belongs to the bicoid class of homeodomain transcription factors, which play essential roles in embryonic development and disease. Pioneered evidences reported by Semina et al. (1996) identified 4q25 translocations association with Rieger syndrome, a human pathological condition characterized by underdevelopment of the teeth, mild craniofacial abnormalities, and distinct eye defects, especially glaucoma. These authors isolated an mRNA transcript with a predicted 271-amino acid protein and named it as RIEG gene. RIEG showed high homology with the PITX1 protein, differing by only two residues, and thus was later dubbed PITX2. Soon thereafter, Gage and Camper (1997) identified PITX2 (RIEG) gene in an adult mouse pituitary gland screen for novel homeobox genes and reported two alternatively spliced mRNA products, namely, PITX2A and PITX2B. Soon thereafter, using a differential display method, Arakawa et al. (1998...

This is a preview of subscription content, log in to check access.


  1. Acharya M, Huang L, Fleisch VC, Allison WT, Walter MA. A complex regulatory network of transcription factors critical for ocular development and disease. Hum Mol Genet. 2011;20:1610–24. doi:10.1093/hmg/ddr038.CrossRefPubMedGoogle Scholar
  2. Ammirabile G, Tessari A, Pignataro V, Szumska D, Sutera Sardo F, Benes Jr J, et al. PITX2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium. Cardiovasc Res. 2012;93:291–301. doi:10.1093/cvr/cvr314.CrossRefPubMedGoogle Scholar
  3. Arakawa H, Nakamura T, Zhadanov AB, Fidanza V, Yano T, Bullrich F, et al. Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proc Natl Acad Sci. 1998;95:4573–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bisgrove BW, Essner JJ, Yost HJ. Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development. 2000;127:3567–79.PubMedGoogle Scholar
  5. Boorman CJ, Shimeld SM. The evolution of left-right asymmetry in chordates. BioEssays. 2002;24:1004–11.CrossRefPubMedGoogle Scholar
  6. Campione M, Steinbeisser H, Schweickert A, Deissler K, van Bebber F, Lowe LA, et al. The homeobox gene PITX2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development. 1999;126:1225–34.PubMedGoogle Scholar
  7. Campione M, Ros MA, Icardo JM, Piedra E, Christoffels VM, Schweickert A, et al. PITX2 expression defines a left cardiac lineage of cells: evidence for atrial and ventricular molecular isomerism in the iv/iv mice. Dev Biol. 2001;231:252–64.CrossRefPubMedGoogle Scholar
  8. Chawla B, Schley E, Williams AL, Bohnsack BL. Retinoic acid and PITX2 regulate early neural crest survival and migration in craniofacial and ocular development. Birth Defects Res B Dev Reprod Toxicol. 2016;107:126–35. doi:10.1002/bdrb.21177.CrossRefPubMedGoogle Scholar
  9. Chinchilla A, Daimi H, Lozano-Velasco E, Dominguez JN, Caballero R, Delpón E, et al. PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet. 2011;4:269–79. doi:10.1161/CIRCGENETICS.110.958116.CrossRefPubMedGoogle Scholar
  10. Cox CJ, Espinoza HM, McWilliams B, Chappell K, Morton L, Hjalt TA, Semina EV, Amendt BA. Differential regulation of gene expression by PITX2 isoforms. J Biol Chem. 2002;77:25001–10.CrossRefGoogle Scholar
  11. Diehl AG, Zareparsi S, Qian M, Khanna R, Angeles R, Gage PJ. Extraocular muscle morphogenesis and gene expression are regulated by PITX2 gene dose. Invest Ophthalmol Vis Sci. 2006;47:1785–93.CrossRefPubMedGoogle Scholar
  12. Dong F, Sun X, Liu W, Ai D, Klysik E, Lu MF, et al. PITX2 promotes development of splanchnic mesoderm-derived branchiomeric muscle. Development. 2006;133:4891–9.CrossRefPubMedGoogle Scholar
  13. Eng D, Ma HY, Xu J, Shih HP, Gross MK, Kioussi C. Loss of abdominal muscle in Pitx2 mutants associated with altered axial specification of lateral plate mesoderm. PLoS One. 2012;7:e42228. doi:10.1371/journal.pone.0042228.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Evans AL, Gage PJ. Expression of the homeobox gene PITX2 in neural crest is required for optic stalk and ocular anterior segment development. Hum Mol Genet. 2005;14:3347–59.CrossRefPubMedGoogle Scholar
  15. Franco D, Campione M. The role of PITX2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med. 2003;13:157–63.CrossRefPubMedGoogle Scholar
  16. Fung FK, Chan DW, Liu VW, Leung TH, Cheung AN, Ngan HY. Increased expression of PITX2 transcription factor contributes to ovarian cancer progression. PLoS One. 2012;7:e37076. doi:10.1371/journal.pone.0037076.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Furtado MB, Biben C, Shiratori H, Hamada H, Harvey RP. Characterization of Pitx2c expression in the mouse heart using a reporter transgene. Dev Dyn. 2011;240:195–203. doi:10.1002/dvdy.22492.CrossRefPubMedGoogle Scholar
  18. Gage PJ, Camper SA. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet. 1997;6:457–64.CrossRefPubMedGoogle Scholar
  19. Gage PJ, Zacharias AL. Signaling “cross-talk” is integrated by transcription factors in the development of the anterior segment in the eye. Dev Dyn. 2009;238:2149–62. doi:10.1002/dvdy.22033.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gage PJ, Kuang C, Zacharias AL. The homeodomain transcription factor PITX2 is required for specifying correct cell fates and establishing angiogenic privilege in the developing cornea. Dev Dyn. 2014;243:1391–400. doi:10.1002/dvdy.24165.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353–7.CrossRefPubMedGoogle Scholar
  22. Guioli S, Lovell-Badge R. PITX2 controls asymmetric gonadal development in both sexes of the chick and can rescue the degeneration of the right ovary. Development. 2007;134:4199–208.CrossRefPubMedGoogle Scholar
  23. Harbeck N, Nimmrich I, Hartmann A, Ross JS, Cufer T, Grützmann R, et al. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients. J Clin Oncol. 2008;26:5036–42. doi:10.1200/JCO.2007.14.1697.CrossRefPubMedGoogle Scholar
  24. Hatayama M, Mikoshiba K, Aruga J. IP3 signaling is required for cilia formation and left-right body axis determination in Xenopus embryos. Biochem Biophys Res Commun. 2011;410:520–4. doi:10.1016/j.bbrc.2011.06.014.CrossRefPubMedGoogle Scholar
  25. Hebert SL, Daniel ML, McLoon LK. The role of PITX2 in maintaining the phenotype of myogenic precursor cells in the extraocular muscles. PLoS One. 2013;8:e58405. doi:10.1371/journal.pone.0058405.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hirose H, Ishii H, Mimori K, Tanaka F, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M. The significance of PITX2 overexpression in human colorectal cancer. Ann Surg Oncol. 2011;18:3005–12. doi:10.1245/s10434-011-1653-z.CrossRefPubMedGoogle Scholar
  27. Hsieh YW, Zhang XM, Lin E, Oliver G, Yang XJ. The homeobox gene Six3 is a potential regulator of anterior segment formation in the chick eye. Dev Biol. 2002;248:265–80.CrossRefPubMedGoogle Scholar
  28. Kirchhof P, Kahr PC, Kaese S, Piccini I, Vokshi I, Scheld HH, et al. PITX2c is expressed in the adult left atrium, and reducing PITX2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet. 2011;4:123–33. doi:10.1161/CIRCGENETICS.110.958058.CrossRefPubMedGoogle Scholar
  29. L’Honoré A, Commère PH, Ouimette JF, Montarras D, Drouin J, Buckingham M. Redox regulation by PITX2 and Pitx3 is critical for fetal myogenesis. Dev Cell. 2014;29:392–405. doi:10.1016/j.devcel.2014.04.006.CrossRefPubMedGoogle Scholar
  30. Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, et al. PITX2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature. 1999;401:279–82.CrossRefPubMedGoogle Scholar
  31. Liu C, Liu W, Lu MF, Brown NA, Martin JF. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development. 2001;128(11):2039–48. PubMed PMID: 11493526.Google Scholar
  32. Liu Y, Semina EV. PITX2 Deficiency results in abnormal ocular and craniofacial development in zebrafish. PLoS One. 2012;7:e30896. doi:10.1371/journal.pone.0030896.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu Y, Huang Y, Zhu GZ. Cyclin A1 is a transcriptional target of PITX2 and overexpressed in papillary thyroid carcinoma. Mol Cell Biochem. 2013;384:221–7. doi:10.1007/s11010-013-1801-9.CrossRefPubMedGoogle Scholar
  34. Logan M, Pagan-Westphal SM, Smith DM, Paganessi L, Tabin CJ. The transcription factor PITX2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell. 1998;94:307–17.CrossRefPubMedGoogle Scholar
  35. Long S, Ahmad N, Rebagliati M. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development. 2003;130:2303–16.CrossRefPubMedGoogle Scholar
  36. Lozano-Velasco E, Contreras A, Crist C, Hernández-Torres F, Franco D, Aránega AE. PITX2c modulates Pax3+/Pax7+ cell populations and regulates Pax3 expression by repressing miR27 expression during myogenesis. Dev Biol. 2011;357:165–78. doi:10.1016/j.ydbio.2011.06.039.CrossRefPubMedGoogle Scholar
  37. Lozano-Velasco E, Vallejo D, Esteban FJ, Doherty C, Hernández-Torres F, Franco D, et al. A PITX2-microRNA pathway modulates cell proliferation in myoblasts and skeletal-muscle satellite cells and promotes their commitment to a myogenic cell fate. Mol Cell Biol. 2015;35:2892–909. doi:10.1128/MCB.00536-15.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lozano-Velasco E, Hernández-Torres F, Daimi H, Serra SA, Herraiz A, Hove-Madsen L, et al. PITX2 impairs calcium handling in a dose-dependent manner by modulating Wnt signalling. Cardiovasc Res. 2016;109:55–66. doi:10.1093/cvr/cvv207.CrossRefPubMedGoogle Scholar
  39. Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature. 1999;401:276–8.CrossRefPubMedGoogle Scholar
  40. Luan ZM, Zhang H, Qu XL. Prediction efficiency of PITX2 DNA methylation for prostate cancer survival. Genet Mol Res. 2016;15. doi:10.4238/gmr.15026750.Google Scholar
  41. Martin DM, Probst FJ, Fox SE, Schimmenti LA, Semina EV, Hefner MA, Belmont JW, Camper SA. Exclusion of PITX2 mutations as a major cause of CHARGE association. Am J Med Genet. 2001;111:27–30.CrossRefGoogle Scholar
  42. Martínez-Fernandez S, Hernández-Torres F, Franco D, Lyons GE, Navarro F, Aránega AE. PITX2c overexpression promotes cell proliferation and arrests differentiation in myoblasts. Dev Dyn. 2006;235:2930–9.CrossRefPubMedGoogle Scholar
  43. Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de Vries C, Wiese C, Clout DE, et al. Molecular pathway for the localized formation of the sinoatrial node. Circ Res. 2007a;100:354–62.CrossRefPubMedGoogle Scholar
  44. Mommersteeg MT, Brown NA, Prall OWJ, de Gier-de Vries C, Harvey RP, Moorman A, et al. PITX2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res. 2007b;101:902–9.CrossRefPubMedGoogle Scholar
  45. Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME, Schwope I, Bolt-de Vries J, Harbeck N, et al. DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat. 2008;111:429–37.CrossRefPubMedGoogle Scholar
  46. Park SW, Kim HG, Heo H, Park YG. Anomalous scleral insertion of superior oblique in Axenfeld-Rieger syndrome. Korean J Ophthalmol. 2009;23:62–4. doi:10.3341/kjo.2009.23.1.62.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Piedra ME, Icardo JM, Albajar M, Rodriguez-Rey JC, Ros MA. PITX2 participates in the late phase of the pathway controlling left-right asymmetry. Cell. 1998;94:319–24.CrossRefPubMedGoogle Scholar
  48. Reis LM, Semina EV. Genetics of anterior segment dysgenesis disorders. Curr Opin Ophthalmol. 2011;22:314–24. doi:10.1097/ICU.0b013e328349412b.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sarmah B, Latimer AJ, Appel B, Wente SR. Inositol polyphosphates regulate zebrafish left-right asymmetry. Dev Cell. 2005;9:133–45.CrossRefPubMedGoogle Scholar
  50. Schayek H, Bentov I, Jacob-Hirsch J, Yeung C, Khanna C, Helman LJ, et al. Global methylation analysis identifies PITX2 as an upstream regulator of the androgen receptor and IGF-I receptor genes in prostate cancer. Horm Metab Res. 2012;44:511–9. doi:10.1055/s-0032-1311566.CrossRefPubMedGoogle Scholar
  51. Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA, et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet. 1996;14:392–9.CrossRefPubMedGoogle Scholar
  52. Semina EV, Reiter RS, Murray JC. Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet. 1997;6(12):2109–16. PubMed PMID: 9328475.PubMedCrossRefGoogle Scholar
  53. Silla ZT, Naidoo J, Kidson SH, Sommer P. Signals from the lens and Foxc1 regulate the expression of key genes during the onset of corneal endothelial development. Exp Cell Res. 2014;322:381–8. doi:10.1016/j.yexcr.2014.01.016.CrossRefPubMedGoogle Scholar
  54. St Amand TR, Ra J, Zhang Y, Hu Y, Baber SI, Qiu M, et al. Cloning and expression pattern of chicken PITX2: a new component in the SHH signaling pathway controlling embryonic heart looping. Biochem Biophys Res Commun. 1998;247:100–5.CrossRefPubMedGoogle Scholar
  55. Strungaru MH, Dinu I, Walter MA. Genotype-phenotype correlations in Axenfeld-Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Invest Ophthalmol Vis Sci. 2007;48:228–37.CrossRefPubMedGoogle Scholar
  56. Suzuki T, Washio Y, Aritaki M, Fujinami Y, Shimizu D, Uji S, et al. Metamorphic PITX2 expression in the left habenula correlated with lateralization of eye-sidedness in flounder. Develop Growth Differ. 2009;51:797–808. doi:10.1111/j.1440-169X.2009.01139.x.CrossRefGoogle Scholar
  57. Takamiya M, Weger BD, Schindler S, Beil T, Yang L, Armant O, et al. Molecular description of eye defects in the zebrafish Pax6b mutant, sunrise, reveals a Pax6b-dependent genetic network in the developing anterior chamber. PLoS One. 2015;10:e0117645. doi:10.1371/journal.pone.0117645.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tao Y, Zhang M, Li L, Bai Y, Zhou Y, Moon AM, et al. PITX2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes. Circ Cardiovasc Genet. 2014;7:23–32. doi:10.1161/CIRCGENETICS.113.000259.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tao G, Kahr PC, Morikawa Y, Zhang M, Rahmani M, Heallen TR, et al. PITX2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature. 2016;534:119–23. doi:10.1038/nature17959.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tessari A, Pietrobon M, Notte A, Cifelli G, Gage PJ, Schneider MD, et al. Myocardial PITX2 differentially regulates the left atrial identity and ventricular asymmetric remodeling programs. Circ Res. 2008;102:813–22. doi:10.1161/CIRCRESAHA.107.163188.CrossRefPubMedGoogle Scholar
  61. Torrado M, Franco D, Hernández-Torres F, Crespo-Leiro MG, Iglesias-Gil C, Castro-Beiras A, et al. Pitx2c is reactivated in the failing myocardium and stimulates myf5 expression in cultured cardiomyocytes. PLoS One. 2014;9:e90561. doi:10.1371/journal.pone.0090561.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tümer Z, Bach-Holm D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet. 2009;17:1527–39. doi:10.1038/ejhg.2009.93.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vinarskaja A, Schulz WA, Ingenwerth M, Hader C, Arsov C. Association of PITX2 mRNA down-regulation in prostate cancer with promoter hypermethylation and poor prognosis. Urol Oncol. 2013;31:622–7. doi:10.1016/j.urolonc.2011.04.010.CrossRefPubMedGoogle Scholar
  64. Wan Abdul Rahman WF, Fauzi MH, Jaafar H. Expression of DNA methylation marker of paired-like homeodomain transcription factor 2 and growth receptors in invasive ductal carcinoma of the breast. Asian Pac J Cancer Prev. 2014;15:8441–5.CrossRefPubMedGoogle Scholar
  65. Wang J, Klysik E, Sood S, Johnson RL, Wehrens XH, Martin JF. PITX2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci U S A. 2010;107:9753–8. doi:10.1073/pnas.0912585107.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wang J, Zhang DF, Sun YM, Yang YQ. A novel PITX2c loss-of-function mutation associated with familial atrial fibrillation. Eur J Med Genet. 2014;57:25–31. doi:10.1016/j.ejmg.2013.11.004.CrossRefPubMedGoogle Scholar
  67. Wang Q, Li J, Wu W, Shen R, Jiang H, Qian Y, et al. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget. 2016;7:11208–22. doi:10.18632/oncotarget.7158.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Weiss G, Cottrell S, Distler J, Schatz P, Kristiansen G, Ittmann M, et al. DNA methylation of the PITX2 gene promoter region is a strong independent prognostic marker of biochemical recurrence in patients with prostate cancer after radical prostatectomy. J Urol. 2009;181:1678–85. doi:10.1016/j.juro.2008.11.120.CrossRefPubMedGoogle Scholar
  69. Wilting J, Hagedorn M. Left-right asymmetry in embryonic development and breast cancer: common molecular determinants? Curr Med Chem. 2011;18:5519–27.CrossRefPubMedGoogle Scholar
  70. Yang YQ, Xu YJ, Li RG, Qu XK, Fang WY, Liu X. Prevalence and spectrum of PITX2c mutations associated with familial atrial fibrillation. Int J Cardiol. 2013;3(168):2873–6. doi:10.1016/j.ijcard.2013.03.141.CrossRefGoogle Scholar
  71. Yashiro K, Shiratori H, Hamada H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature. 2007;450:285–8.CrossRefPubMedGoogle Scholar
  72. Yasui K, Zhang S, Uemura M, Saiga H. Left-right asymmetric expression of BbPtx, a Ptx-related gene, in a lancelet species and the developmental left-sidedness in deuterostomes. Development. 2000;127:187–95.PubMedGoogle Scholar
  73. Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, et al. PITX2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell. 1998;94:299–305.CrossRefPubMedGoogle Scholar
  74. Zhang JX, Tong ZT, Yang L, Wang F, Chai HP, Zhang F, et al. PITX2: a promising predictive biomarker of patients' prognosis and chemoradioresistance in esophageal squamous cell carcinoma. Int J Cancer. 2013;132:2567–77. doi:10.1002/ijc.27930.CrossRefPubMedGoogle Scholar
  75. Zhao CM, Peng LY, Li L, Liu XY, Wang J, Zhang XL, et al. PITX2 loss-of-function mutation contributes to congenital endocardial cushion defect and Axenfeld-Rieger syndrome. PLoS One. 2015;10:e0124409. doi:10.1371/journal.pone.0124409.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhou Y, Gong B, Kaminski HJ. Genomic profiling reveals PITX2 controls expression of mature extraocular muscle contraction-related genes. Invest Ophthalmol Vis Sci. 2012;53:1821–9. doi:10.1167/iovs.12-9481.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Experimental BiologyUniversity of JaénJaénSpain