Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Cytochrome P450 (cyp)

  • Kirsty J. McLean
  • Andrew W. MunroEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101615


Historical Background

The cytochromes P450 (P450s or CYPs) form a superfamily of enzymes found in organisms from archaea and bacteria through to man (Munro et al. 2007). P450s were discovered as a consequence of their unusual UV-visible absorbance properties, originating from their heme cofactor, which is bound to the protein through a cysteine sulfur in its thiolate form (Denisov et al. 2005). This heme iron coordination state gives rise to an absorption band at ~450 nm when the P450 heme iron is in the reduced (ferrous) state and bound to the inhibitor carbon monoxide (CO). This absorbance spectrum explains the title P450 (or pigment at 450 nm). Early studies were done independently by Martin Klingenberg and by David Garfinkel (Klingenberg 1958; Garfinkel 1958). This P450 spectrum was first reported by Klingenberg, who prepared rat liver microsomes and then reduced the sample with NADPH (or dithionite)...
This is a preview of subscription content, log in to check access.


  1. Andersen OS, Koeppe RE. Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct. 2007;36:107–30.PubMedCrossRefGoogle Scholar
  2. Auchus RJ, Miller WL. P450 enzymes in steroid processing. In: Ortiz de Montellano PR, editor. Cytochromes P450: structure, mechanism and biochemistry. 4th ed. New York: Springer; 2015. p. 851–79.Google Scholar
  3. Belcher J, McLean KJ, Matthews S, Woodward LS, Fisher K, Rigby SE, Nelson DR, Potts D, Baynham MT, Parker DA, Leys D, Munro AW. Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium. J Biol Chem. 2014;289(10):6535–50.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bernhardt R, Urlacher V. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitation. Appl Microbiol Biotechnol. 2014;98(14):6185–203.PubMedCrossRefGoogle Scholar
  5. Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep. 2008;25(3):475–516.PubMedCrossRefGoogle Scholar
  6. Butler CF, Peet C, Mason AE, Voice MW, Leys D, Munro AW. Key mutations alter the cytochrome P450 BM3 conformational landscape and remove inherent substrate bias. J Biol Chem. 2013;288(35):25387–99.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Butler CF, Peet C, McLean KJ, Baynham MT, Blankley RT, Fisher K, Rigby SE, Leys D, Voice MW, Munro AW. Human P450-like oxidation of diverse proton pump inhibitor drugs by ‘gatekeeper’ mutants of flavocytochrome P450 BM3. Biochem J. 2014;460(2):247–59.PubMedCrossRefGoogle Scholar
  8. Cankar K, van Houwelingen A, Bosch D, Sonke T, Bouwmeester H, Beekwilder J. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett. 2011;585(1):178–82.PubMedCrossRefGoogle Scholar
  9. Coelho PS, Brustad EM, Kannan A, Arnold FH. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science. 2013a;339(6117):307–10.PubMedCrossRefGoogle Scholar
  10. Coelho PS, Wang ZJ, Ener ME, Baril SA, Kannan A, Arnold FH, Brustad EM. A serine-substituted P450 catalyzes highly efficient carbene transfet to olefins in vivo. Nat Chem Biol. 2013b;9(8):485–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry 3rd CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537–44.PubMedCrossRefGoogle Scholar
  12. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honoré N, Garnier T, Churcher C, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroicx C, MacLean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Taylor K, Whitehead S, Woodward JR, Barrell BG. Massive gene decay in the leprosy Bacillus. Nature. 2001;409(6823):1007–11.PubMedCrossRefGoogle Scholar
  13. Coon MJ. Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol. 2005;45:1–25.PubMedCrossRefGoogle Scholar
  14. Cooper DY, Estabrook RW, Rosenthal O. The stoichiometry of C21 hydroxylation of steroids by adrenocortical microsomes. J Biol Chem. 1963;238(4):1320–3.PubMedPubMedCentralGoogle Scholar
  15. Crespi CL, Penman BW, Steimel DT, Gelboin HV, Gonzalez FJ. The development of a human cell line stably expressing human CYP3A4: role in the metabolic activation of aflatoxin B1 and comparison to CYP1A2 and CYP2A3. Carcinogenesis. 1991;12(2):255–9.CrossRefGoogle Scholar
  16. Daff SN, Chapman SK, Turner KL, Holt RA, Govindaraj S, Poulos TL, Munro AW. Redox control of the catalytic cycle of flavocytochrome P450 BM3. Biochemistry. 1997;36(45):13816–23.PubMedCrossRefGoogle Scholar
  17. Das A, Sligar SG. Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer. Biochemistry. 2009;48(51):12104–12.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Denisov IG, Sligar SG. Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol. 2016;23(6):481–6.PubMedCrossRefGoogle Scholar
  19. Denisov IG, Makris TM, Sligar SG, Munro AW. Structure and chemistry of cytochrome P450. Chem Rev. 2005;105(6):2253–77.PubMedCrossRefGoogle Scholar
  20. Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renninger NS, Chang MC, Baker D, Keasling JD. A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450 BM3. ACS Chem Biol. 2009;4(4):261–7.PubMedCrossRefGoogle Scholar
  21. Driscoll MD, McLean KJ, Levy C, Mast N, Pikuleva IA, Lafite P, Rigby SE, Leys D, Munro AW. Structural and biochemical characterization of Mycobacterium tuberculosis CYP142: evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen. J Biol Chem. 2010;285(49):38270–82.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dunford AJ, McLean KJ, Sabri M, Seward HE, Heyes DJ, Scrutton NS, Munro AW. Rapid P450 heme iron reduction by laser photoexcitation of Mycobacterium tuberculosis CYP121 and CYP51B1. Analysis of CO complexation reactions and reversibility of the P450/P420 equilibrium. J Biol Chem. 2007;282(34):24816–24.PubMedCrossRefGoogle Scholar
  23. Edin ML, Cheng J, Gruzdev A, Hoopes SL, Zeldin DC. P450 enzymes in lipid oxidation. In: Ortiz de Montellano PR, editor. Cytochromes P450: structure, mechanism and biochemistry. 4th ed. New York: Springer; 2015. p. 881–905.Google Scholar
  24. Enright JM, Toomey MB, Sato SY, Temple SE, Allen JR, Fujiwara R, Kramlinger VM, Nagy LD, Johnson KM, Xiao Y, How MJ, Johnson SL, Roberts NW, Kefalov VJ, Guengerich FP, Corbo JC. Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr Biol. 2015;25(23):3048–57.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Farrow SC, Hagel JM, Beaudoin GA, Burns DC, Facchini PJ. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat Chem Biol. 2015;11(9):728–32.PubMedCrossRefGoogle Scholar
  26. Feyereisen R. Evolution of insect P450. Biochem Soc Trans. 2006;34(6):1252–5.PubMedCrossRefGoogle Scholar
  27. Fujishiro T, Shoji O, Nagano S, Sugimoto H, Shiro Y, Watanabe Y. Crystal structure of H2O2-dependent cytochrome P450SPα with its bound fatty acid substrate: insight into the regioselective hydroxylation of fatty acids at the alpha position. J Biol Chem. 2011;286(34):29941–50.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fujita Y, Ohi H, Murayama N, Saguchi K, Higuchi S. Identification of multiple cytochrome P450 genes belonging to the CYP4 family in Xenopus laevis: cDNA cloning of CYP4F42 and CYP4V4. Comp Biochem Physiol B Biochem Mol Biol. 2004;138(2):129–36.PubMedCrossRefGoogle Scholar
  29. Garfinkel D. Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch Biochem Biophys. 1958;77(2):439–509.CrossRefGoogle Scholar
  30. Gillam EM, Baba T, Kim BR, Ohmori S, Guengerich FP. Expression of modified human cytochrome P450 3A4 in Escherichia coli and purification and reconstitution of the enzyme. Arch Biochem Biophys. 1993;305(1):123–31.PubMedCrossRefGoogle Scholar
  31. Girvan HM, Munro AW. Applications of cytochrome P450 enzymes in biotechnology and synthetic biology. Curr Opin Chem Biol. 2016;31:136–45.PubMedCrossRefGoogle Scholar
  32. Green AJ, Rivers SL, Cheesman M, Reid GA, Quaroni LG, MacDonald ID, Chapman SK, Munro AW. Expression, purification and characterization of cytochrome P450 BioI: a novel P450 involved in biotin synthesis in Bacillus subtilis. J Biol Inorg Chem. 2001;6(5–6):523–33.PubMedCrossRefGoogle Scholar
  33. Green AJ, Munro AW, Cheesman MR, Reid GA, von Wachenfeldt C, Chapman SK. Expression, purification and characterisation of a Bacillus subtilis ferredoxin: a potential electron transfer donor to cytochrome P450 BioI. J Inorg Biochem. 2003;93(1–2):92–9.PubMedCrossRefGoogle Scholar
  34. Gregory MC, Denisov IG, Grinkova YV, Khatri Y, Sligar SG. Kinetic solvent isotope effect in human P450 CYP17A1-mediated androgen formation: evidence for a reactive peroxoanion intermediate. J Am Chem Soc. 2013;135(44):16245–7.PubMedCrossRefGoogle Scholar
  35. Grinberg AV, Hannemann F, Schiffler B, Müller J, Heinemann U, Bernhardt R. Adrenodoxin: structure, stability and electron transfer properties. Proteins. 2000;40(4):590–612.PubMedCrossRefGoogle Scholar
  36. Groves JT. High-valent iron in chemical and biological oxidations. J Inorg Biochem. 2006;100(4):434–47.PubMedCrossRefGoogle Scholar
  37. Guengerich FP. Uncommon P450-catalyzed reactions. Curr Drug Metab. 2001;2(2):93–115.PubMedCrossRefGoogle Scholar
  38. Guengerich FP. A malleable catalyst dominates the metabolism of drugs. Proc Natl Acad Sci U S A. 2006;103(37):13565–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochromes P450: structure, mechanism and biochemistry. 4th ed. New York: Springer; 2015. p. 523–785.Google Scholar
  40. Guengerich FP, Munro AW. Unusual cytochrome P450 enzymes and reactions. J Biol Chem. 2013;288(24):17065–73.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hanley SC, Ost TW, Daff S. The unusual redox properties of flavocytochrome P450 BM3 flavodoxin domain. Biochem Biophys Res Commun. 2004;325(4):1418–23.PubMedCrossRefGoogle Scholar
  42. Haslinger K, Maximowitsch E, Brieke K, Koch A, Cryle MJ. Cyochrome P450 OxyBtei catalyzes the first phenolic coupling step in teicoplanin biosynthesis. ChemBioChem. 2014;15(18):2719–28.PubMedCrossRefGoogle Scholar
  43. Hecker M, Ullrich V. On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J Biol Chem. 1989;264:141–50.PubMedPubMedCentralGoogle Scholar
  44. Hecker M, Baader WJ, Weber P, Ullrich V. Thromboxane synthase catalyses hydroxylations of prostaglandin H2 analogs in the presence of iodosylbenzene. Eur J Biochem. 1987;169:563–9.PubMedCrossRefGoogle Scholar
  45. Hedegaard J, Gunsalus IC. Mixed function oxidation IV. An induced methylene hydroxylase in camphor oxidation. J Biol Chem. 1965;240(10):4038–43.PubMedPubMedCentralGoogle Scholar
  46. Heilmann LJ, Sheen YY, Bigelow SW, Nebert DW. Trout P450IA1: cDNA and deduced protein sequence, expression in liver, and evolutionary significance. DNA. 1988;7(6):379–87.PubMedCrossRefGoogle Scholar
  47. Henderson CJ, McLaughlin LA, Wolf CR. Evidence that cytochrome b5 and cytochrome b5 reductase can act as sole electron donors to the hepatic cytochrome P450 systems. Mol Pharmacol. 2013;83:1209–17.PubMedCrossRefGoogle Scholar
  48. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, TC MI, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, DA O’B, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298(5591):129–49.PubMedCrossRefGoogle Scholar
  49. Ichinose H, Wariishi H. Heterologous expression and mechanistic investigation of a fungal cytochrome P450 (CYP5150A2): involvement of alternative redox partners. Arch Biochem Biophys. 2012;518(1):8–15.PubMedCrossRefGoogle Scholar
  50. Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci U S A. 1999;96(17):9509–14.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattor M, Omura S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol. 2003;21:526–31.PubMedCrossRefGoogle Scholar
  52. Johnson AL, Edson KZ, Totah RA, Rettie AE. Cytochrome P450 ω-hydroxylases in inflammation and cancer. Adv Pharmacol. 2015;74:223–62.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Katagiri M, Ganguli BN, Gunsalus IC. A soluble cytochrome P-450 functional in methylene hydroxylation. J Biol Chem. 1968;243(12):3543–6.PubMedPubMedCentralGoogle Scholar
  54. Kimmich N, Das A, Sevrioukova I, Meharenna Y, Sligar SG, Poulos TL. Electron transfer between cytochrome P450cin and its FMN-containing redox partner, cindoxin. J Biol Chem. 2007;282(37):27006–11.PubMedCrossRefGoogle Scholar
  55. Klingenberg M. Pigments of rat liver microsomes. Arch Biochem Biophys. 1958;75(2):376–86.PubMedCrossRefGoogle Scholar
  56. Kubo T, Peters MW, Meinhold P, Arnold FH. Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by enineered cytochromes P450 BM-3. Chemistry. 2006;12(4):1216–20.PubMedCrossRefGoogle Scholar
  57. Lamb DC, Lei L, Warrilow AG, Lepesheva GI, Mullins JG, Waterman MR, Kelly SL. The first virally encoded cytochrome P450. J Virol. 2009;83(16):8266–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Matsuba Y, Zi J, Jones AD, Peters RJ, Pichersky E. Biosynthesis of the diterpenoid lycosantalonol via nerylneryl diphosphate in Solanum lycopersicum. PLoS One. 2015;10(3):e0119302.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mayer RT, Svoboda JA, Weirich GF. Ecdysone 2-hydroxylase in midgut mitochondria of Manducta sexta (L.). Hoppe Seylers Z Physiol Chem. 1978;359(10):1247–57.PubMedCrossRefGoogle Scholar
  60. McLean KJ, Warman AJ, Seward HE, Marshall KR, Girvan HM, Cheesman MR, et al. Biophysical characterization of the sterol demethylase P450 from Mycobacterium tuberculosis, its cognate ferredoxin, and their interactions. Biochemistry. 2006;45(27):8427–43.PubMedCrossRefGoogle Scholar
  61. McLean KJ, Hans M, Munro AW. Cholesterol, an essential molecule: diverse roles involving cytochrome P450 enzymes. Biochem Soc Trans. 2012;40:587–93.PubMedCrossRefGoogle Scholar
  62. McLean KJ, Leys D, Munro AW. Microbial cytochromes P450. In: Ortiz de Montellano PR, editor. Cytochromes P450: structure, mechanism and biochemistry. 4th ed. New York: Springer; 2014. p. 261–407.Google Scholar
  63. McLean KJ, Hans M, Meijrink B, van Scheppingen WB, Vollebregt A, Tee KL, van der Laan JM, Leys D, Munro AW, van den Berg MA. Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum. Proc Natl Acad Sci U S A. 2015;112(9):2847–52.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Minerdi D, Sadeghi SJ, Di Nardo G, Rua F, Castrignanò S, Allegra P, Gilardi G. CYP116B5: a new class VII catalytically self-sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes. Mol Microbiol. 2015;95(3):539–54.PubMedCrossRefGoogle Scholar
  65. Miura Y, Fulco AJ. Omega-2 hydroxylation of fatty acids by a soluble system from Bacillus megaterium. J Biol Chem. 1974;249(6):1880.PubMedPubMedCentralGoogle Scholar
  66. Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O’Connel J, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, Stroud RM. Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc Natl Acad Sci U S A. 2014;111:3865–70.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Munro AW, Girvan HM, McLean KJ. Variations on a (t)heme – novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep. 2007;24(3):585–609.PubMedCrossRefGoogle Scholar
  68. Munro AW, Girvan HM, Mason AE, Dunford AJ, McLean KJ. What makes a P450 tick? Trends Biochem Sci. 2013;38(3):140–50.PubMedCrossRefGoogle Scholar
  69. Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B, Levin W, Phililips IR, Sato R, Waterman MR. The P450 gene superfamily: recommended nomenclature. DNA. 1987;6(1):1–11.PubMedCrossRefGoogle Scholar
  70. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Loper JC, Sato R, Waterman MR, Waxman DJ. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991;10(1):1–14.PubMedCrossRefGoogle Scholar
  71. Nelson DR. http://drnelson.uthsc.edu/trypb.html. 2004. Accessed 17 Oct 2016.
  72. Nelson DR. http://drnelson.uthsc.edu/Aspergillus.htm. 2007. Accessed 17 Oct 2016.
  73. Nelson DR. http://drnelson.uthsc.edu/Nomenclature.html. 2009. Accessed 18 Oct 2016.
  74. Nelson DR. http://drnelson.uthsc.edu/tomato.html. 2012. Accessed 17 Oct 2016.
  75. Nelson DR. http://drnelson.uthsc.edu/bos.2015.htm. 2015. Accessed 17 Oct 2016.
  76. Nelson DR. http://drnelson.uthsc.edu/P450statistics. April 2016 (png). Accessed 17 Oct 2016.
  77. Noble MA, Miles CS, Chapman SK, Lysek DA, Mackay AC, Reid GA, Hanzlik RP, Munro AW. Roles of key active site residues in flavocytochrome P450 BM3. Biochem J. 1999;339(2):371–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ogura H, Nishida CR, Hoch U, Perera R, Dawson JH, Ortiz de Montellano PR. EpoK, a cytochrome P450 involved in biosynthesis of the anticancer agents epothilones A and B. Substrate-mediated rescue of a P450 enzyme. Biochemistry. 2004;43(46):14712–21.PubMedCrossRefGoogle Scholar
  79. Omura T. Mitochondrial P450s. Chem Biol Interact. 2006;163:86–93.PubMedCrossRefGoogle Scholar
  80. Omura T, Sato R. The carbon monoxide binding pigment of liver microsomes I. Evidence for its hemoprotein nature. J Biol Chem. 1964;7:2370–8.Google Scholar
  81. Perera R, Sono M, Sigman JA, Pfister TD, Lu Y, Dawson JH. Neutral thiol as a proximal ligand to ferrous heme iron: implications for heme proteins that lose cysteine thiolate ligation on reduction. Proc Natl Acad Sci U S A. 2003;100(7):3641–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Peters MW, Meinhold P, Glieder A, Arnold FH. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J Am Chem Soc. 2003;125(44):13442–50.PubMedCrossRefGoogle Scholar
  83. Pikuleva IA, Waterman MR. Cytochromes P450: roles in diseases. J Biol Chem. 2013;288(24):17091–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Poulos TL, Johnson EF. Structures of cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochromes P450: structure, mechanism and biochemistry. 4th ed. New York: Springer; 2015. p. 3–32.Google Scholar
  85. Poulos TL, Finzel BC, Howard AJ. High resolution crystal structure of cytochrome P450cam. J Mol Biol. 1987;195(3):687–700.PubMedCrossRefGoogle Scholar
  86. Puchkaev AV, Ortiz de Montellano PR. The Sulfolobus solfataricus electron donor partners of thermophilic CYP119: an unusual non-NAD(P)H-dependent cytochrome P450 system. Arch Biochem Biophys. 2005;434(1):169–77.PubMedCrossRefGoogle Scholar
  87. Puchkaev AV, Wakagi T, Ortiz de Montellano PR. CYP119 plus a Sulfolobus tokodaii strain 7 ferredoxin and 2-oxoacid : ferredoxin oxidoreductase constitute a high-temperature cytochrome P450 catalytic system. J Am Chem Soc. 2002;124(43):12682–3.PubMedCrossRefGoogle Scholar
  88. Quaroni LG, Seward HM, McLean KJ, Girvan HM, Ost TW, Noble MA, Kelly SM, Price NC, Cheesman MR, Smith WE, Munro AW. Interaction of nitric oxide with cytochrome P450 BM3. Biochemistry. 2004;43(51):16416–31.PubMedCrossRefGoogle Scholar
  89. Raag R, Poulos TL. Crystal structures of cytochrome P450cam complexed with camphene, thiocamphor, and adamantine: factors controlling P450 substrate hydroxylation. Biochemistry. 1991;30(10):2674–84.PubMedCrossRefGoogle Scholar
  90. Raag R, Martinis SA, Sligar SG, Poulos TL. Crystal structure of the cytochrome P450cam active site mutant Thr252Ala. Biochemistry. 1991;30(48):11420–9.PubMedCrossRefGoogle Scholar
  91. Ramaswamy AV, Sorrels CM, Gerwick WH. Cloning and biochemical characterization of the hectachlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula. J Nat Prod. 2007;70(12):1977–86.PubMedCrossRefGoogle Scholar
  92. Ravichandran KG, Boddupalli SS, Hasermann CA, Peterson JA, Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science. 1993;261(5122):731–6.PubMedCrossRefGoogle Scholar
  93. Ren X, Yorke J, Taylor E, Zhang T, Zhou W, Wong LL. Drug oxidation by cytochrome P450 BM3: Metabolite synthesis and discovering new P450 reaction types. Chemistry. 2015;21(42):15039–47.PubMedCrossRefGoogle Scholar
  94. Rittle J, Green MT. Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science. 2010;330(6006):933–7.PubMedCrossRefGoogle Scholar
  95. Rodgers MW, Zimmerlin A, Werck-Reichhart D, Bolwell GP. Microsomally associated heme proteins from French bean: characterization of the cytochrome P450 cinammate-4-hydroxylase and two peroxidases. Arch Biochem Biophys. 1993;304(2):74–80.PubMedCrossRefGoogle Scholar
  96. Rude MA, Baron ST, Brubaker S, Alibhai M, Del Carayre SB, Schirmer A. Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol. 2011;77(5):1718–27.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rylott EL, Lorenz A, Bruce NC. Biodegradation and biotransformation of explosives. Curr Opin Biotechnol. 2011;22(3):434–40.PubMedCrossRefGoogle Scholar
  98. Sagan L. On the origin of mitosing cells. J Theoret Biol. 1967;14:225–74.CrossRefGoogle Scholar
  99. Schuler MA. P450s in plants, insects and their fungal pathogens. In: Ortiz de Montellano PR, editor. Cytochromes P450: structure, mechanism and biochemistry. 4th ed. New York: Springer; 2015. p. 409–49.Google Scholar
  100. Scott EE, He YA, Wester MR, White MA, Chin CC, Halpert JR, Johnson EF, Stout CD. An open conformation of mammalian cytochrome P450 2B4 at 1.6 Å resolution. Proc Natl Acad Sci U S A. 2003;100(23):13196–201.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sevrioukova IF, Poulos TL, Churbanova IY. Crystal structure of the putidaredoxin reductase-putidaredoxin electron transfer complex. J Biol Chem. 2010;285(18):13616–20.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shimada T, Fujii-Kuriyama Y. Metabolic activation of polycyclic aromatic hydrocarbons by cytochromes P450 1A1 and 1B1. Cancer Sci. 2004;95(1):1–6.PubMedCrossRefGoogle Scholar
  103. Shoun H, Fushinobu S, Jiang L, Kim S-W, Wakagi T. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1593):1186–94.CrossRefGoogle Scholar
  104. Stok JE, Slessor KE, Farlow AJ, Hawkes DB, de Voss JJ. Cytochrome P450cin (CYP176A1). Adv Exp Med Biol. 2015;851:319–39.PubMedCrossRefGoogle Scholar
  105. Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL. Heterozygous mutation in the cholesterol side-chain cleavage enzyme (P450scc) in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab. 2001;86(8):3820–5.PubMedCrossRefGoogle Scholar
  106. The Tomato Genome Consortium (TGC). The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485(7400):635–41.CrossRefGoogle Scholar
  107. Tran NH, Nguyen D, Dwaraknath S, Mahadevan S, Chavez G, Nguyen A, Dao T, Mullen S, Nguyen TA, Cheruzel L. An efficient light-driven P450 BM3 biocatalyst. J Am Chem Soc. 2013;135(39):14484–7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. UCSC Microbial Genome Browser. http://microbes.ucsc.edu/cgi-bin/hgGateway?clade=bacteria-actinobacteria. Accessed 17 Oct 2016.
  109. Verma S, Mehta A, Shaha C. CYP5122A1, a novel cytochrome P450 is essential for survival of Leishmania donovani. PLoS One. 2011;6(9):e25273.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang JS, Backman JT, Taavitsainen P, Neuvonen PJ, Kivisto KT. Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000;28:959–65.PubMedPubMedCentralGoogle Scholar
  111. Warman AJ, Robinson JW, Luciakova D, Lawrence AD, Marshall KR, Warren MJ, Cheesman MR, Rigby SEJ, Munro AW, McLean KJ. Characterization of Cupriavidus metallidurans CYP116B1 – a thiocarbamate herbicide oxygenating P450-phthalate dioxygenase reductase fusion protein. FEBS Lett. 2012;279(9):1675–93.CrossRefGoogle Scholar
  112. Waskell L, Kim J-JP. Electron transfer partners of cytochrome P450. In: Ortiz de Montellano PR, editor. Cytochromes P450: structure, mechanism and biochemistry. 4th ed. New York: Springer; 2015. p. 33–68.Google Scholar
  113. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell. 2000;5(1):121–31.PubMedCrossRefGoogle Scholar
  114. Wlodarczyk A, Gnanasekaran T, Nielsen AZ, Zulu NN, Mellor SB, Luckner M, Thøfner JFB, Olsen CE, Mottawie MS, Burow M, Pribil M, Feussner I, Møller BL, Jensen PE. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC6803. Metab Eng. 2016;33:1–11.PubMedCrossRefGoogle Scholar
  115. Yamada H, Shiiyama S, Soejima-Ohkuma T, Honda S, Kumagai Y, Cho AK, et al. Deamination of amphetamines by cytochromes P450: studies on substrate specificity and regioselectivity with microsomes and purified CYP2C subfamily isozymes. J Toxicol Sci. 1997;22:65–73.PubMedCrossRefGoogle Scholar
  116. Yano JK, Koo LS, Schuller DJ, Li H, Ortiz de Montellano PR, Poulos TL. Crystal structure of a thermophilic cytochrome P450 from the archaeon Sulfolobus solfataricus. J Biol Chem. 2000;275(4):31086–92.PubMedCrossRefGoogle Scholar
  117. Yoshimoto FK, Auchus RJ. The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1). J Steroid Biochem Mol Biol. 2015;151:52–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Manchester Institute of Biotechnology, School of ChemistryUniversity of ManchesterManchesterUK