Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Epac

  • Caroline Conte
  • Frank Lezoualc’h
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101595

Synonyms

Historical Background

Eukaryotic cells respond to a wide range of extracellular signals such as growth factors, hormones, and neurotransmitters through the generation of intracellular second messengers. One of the most studied second messenger, cyclic adenosine 3′–5′-monophosphate (cAMP), regulates many cellular events, including secretion, differentiation, migration, and apoptosis. cAMP is produced from adenosine triphosphate (ATP) by adenylyl cyclase (AC) in response to...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

F. Lezoualc’h was supported by grants from Institut National de la Santé et de la Recherche Médicale, Fondation pour la Recherche Médicale (Programme “Equipes FRM 2016”, DEQ20160334892), Fondation de France (00066331) and Université de Toulouse.

References

  1. Almahariq M, Mei FC, Cheng X. Cyclic AMP sensor EPAC proteins and energy homeostasis. Trends Endocrinol Metab. 2014;25:60–71.  https://doi.org/10.1016/j.tem.2013.10.004.CrossRefPubMedGoogle Scholar
  2. Almahariq M, Mei FC, Cheng X. The pleiotropic role of exchange protein directly activated by cAMP 1 (EPAC1) in cancer: implications for therapeutic intervention. Acta Biochim Biophys Sin Shanghai. 2016;48:75–81.  https://doi.org/10.1093/abbs/gmv115.CrossRefPubMedGoogle Scholar
  3. Banerjee U, Cheng X. Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: structure, function and therapeutics. Gene. 2015;570:157–67.  https://doi.org/10.1016/j.gene.2015.06.063.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bisserier M, Blondeau JP, Lezoualc’h F. Epac proteins: specific ligands and role in cardiac remodelling. Biochem Soc Trans. 2014;42(2):257–64.  https://doi.org/10.1042/BST20140033.CrossRefPubMedGoogle Scholar
  5. Breckler M, Berthouze M, Laurent AC, Crozatier B, Morel E, Lezoualc’h F. Rap-linked cAMP signaling Epac proteins: compartmentation, functioning and disease implications. Cell Signal. 2011;23(8):1257–66.  https://doi.org/10.1016/j.cellsig.2011.03.007.CrossRefPubMedGoogle Scholar
  6. Chen H, Wild C, Zhou X, Ye N, Cheng X, Zhou J. Recent advances in the discovery of small molecules targeting exchange proteins directly activated by cAMP (EPAC). J Med Chem. 2014;57(9):3651–65.  https://doi.org/10.1021/jm401425e.CrossRefPubMedGoogle Scholar
  7. de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396(6710):474–7.  https://doi.org/10.1038/24884.CrossRefPubMedGoogle Scholar
  8. Dekkers BG, Racké K, Schmidt M. Distinct PKA and Epac compartmentalization in airway function and plasticity. Pharmacol Ther. 2013;137:248–65.  https://doi.org/10.1016/j.pharmthera.2012.10.006.CrossRefPubMedGoogle Scholar
  9. Gloerich M, Bos JL. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 2010;50:355–75.  https://doi.org/10.1146/annurev.pharmtox.010909.105714.CrossRefPubMedGoogle Scholar
  10. Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998;282(5397):2275–9.CrossRefPubMedGoogle Scholar
  11. Laurent AC, Breckler M, Berthouze M, Lezoualc’h F. Role of Epac in brain and heart. Biochem Soc Trans. 2012;40:51–7.  https://doi.org/10.1042/BST20110642.CrossRefPubMedGoogle Scholar
  12. Lezoualc’h F, Fazal L, Laudette M, Conte C. Cyclic AMP Sensor EPAC proteins and their role in cardiovascular function and disease. Circ Res. 2016;118:881–97.  https://doi.org/10.1161/CIRCRESAHA.115.306529.CrossRefPubMedGoogle Scholar
  13. Métrich M, Berthouze M, Morel E, Crozatier B, Gomez AM, Lezoualc’h F. Role of the cAMP-binding protein Epac in cardiovascular physiology and pathophysiology. Pflugers Arch. 2010;459:535–46.  https://doi.org/10.1007/s00424-009-0747-y.CrossRefPubMedGoogle Scholar
  14. Parnell E, Palmer TM, Yarwood SJ. The future of EPAC-targeted therapies: agonism versus antagonism. Trends Pharmacol Sci. 2015;36:203–14.  https://doi.org/10.1016/j.tips.2015.02.003.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (Epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev. 2013;65:670–709.  https://doi.org/10.1124/pr.110.003707.CrossRefPubMedGoogle Scholar
  16. Sugawara K, Shibasaki T, Takahashi H, Seino S. Structure and functional roles of Epac2 (Rapgef4). Gene. 2016;575:577–83.  https://doi.org/10.1016/j.gene.2015.09.029.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Inserm, UMR-1048, Institut des Maladies Métaboliques et CardiovasculairesToulouseFrance
  2. 2.Université de Toulouse – Paul SabatierToulouseFrance