Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Desmoglein-3

  • Hong Wan
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101583

Synonyms

Historic Background

Desmoglein-3 (Dsg3) was first identified as a pemphigus vulgaris antigen (PVA) from the human keratinocyte expression libraries in 1991 by Amagai et al. in an attempt to search for the targets of pemphigus vulgaris autoantibodies (Amagai et al. 1991). Due to its significant homology with the cadherin family of cell adhesion molecules and most remarkably to Dsg1, Dsg3 is characterized as a member of cadherin superfamily and specifically the one in desmoglein subfamily which contains Dsg1. Pemphigus vulgaris (PV) is a potentially lethal autoimmune blistering disease that affects oral mucosa and skin with the manifestation of acantholysis characterized as the loss of adhesion between epithelial cells and structural components maintaining cell cohesion in the tissues caused by the action of autoantibodies against Dsg3 as well as Dsg1....

This is a preview of subscription content, log in to check access.

References

  1. Amagai M, Klaus-Kovtun V, Stanley JR. Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell. 1991;67(5):869–87.CrossRefPubMedGoogle Scholar
  2. Amagai M, Karpati S, Klaus-Kovtun V, Udey MC, Stanley JR. Extracellular domain of pemphigus vulgaris antigen (desmoglein 3) mediates weak homophilic adhesion. J Invest Dermatol. 1994;103(4):609–15.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andl CD, Stanley JR. Central role of the plakoglobin-binding domain for desmoglein 3 incorporation into desmosomes. J Invest Dermatol. 2001;117(5):1068–74.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aoyama Y, Owada MK, Kitajima Y. A pathogenic autoantibody, pemphigus vulgaris-IgG, induces phosphorylation of desmoglein 3, and its dissociation from plakoglobin in cultured keratinocytes. Eur J Immunol. 1999;29(7):2233–40.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bektas M, Jolly PS, Berkowitz P, Amagai M, Rubenstein DS. A pathophysiologic role for epidermal growth factor receptor in pemphigus acantholysis. J Biol Chem. 2013;288(13):9447–56.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Berkowitz P, Hu P, Liu Z, Diaz LA, Enghild JJ, Chua MP, Rubenstein DS. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem. 2005;280(25):23778–84.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berkowitz P, Hu P, Warren S, Liu Z, Diaz LA, Rubenstein DS. p38MAPK inhibition prevents disease in pemphigus vulgaris mice. Proc Natl Acad Sci USA. 2006;103(34):12855–60.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berkowitz P, Chua M, Liu Z, Diaz LA, Rubenstein DS. Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signaling in the skin. Am J Pathol. 2008a;173(6):1628–36.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berkowitz P, Diaz LA, Hall RP, Rubenstein DS. Induction of p38MAPK and HSP27 phosphorylation in pemphigus patient skin. J Invest Dermatol. 2008b;128(3):738–40.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brown L, Wan H. Desmoglein 3: a help or a hindrance in cancer progression? Cancers (Basel). 2015;7(1):266–86.CrossRefGoogle Scholar
  11. Brown L, Waseem A, Cruz IN, Szary J, Gunic E, Mannan T, Unadkat M, Yang M, Valderrama F, O’Toole EA, Wan H. Desmoglein 3 promotes cancer cell migration and invasion by regulating activator protein 1 and protein kinase C-dependent-Ezrin activation. Oncogene. 2014;33(18):2363–74.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Paolo DG. Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol. 1998;141(6):1449–65.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen YJ, Lee LY, Chao YK, Chang JT, Lu YC, Li HF, Chiu CC, Li YC, Li YL, Chiou JF, Cheng AJ. DSG3 facilitates cancer cell growth and invasion through the DSG3-plakoglobin-TCF/LEF-Myc/cyclin D1/MMP signaling pathway. PLoS One. 2013;8(5):e64088.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chernyavsky AI, Arredondo J, Kitajima Y, Sato-Nagai M, Grando SA. Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J Biol Chem. 2007;282(18):13804–12.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cirillo N, AlShwaimi E, McCullough M, Prime SS. Pemphigus vulgaris autoimmune globulin induces Src-dependent tyrosine-phosphorylation of plakophilin 3 and its detachment from desmoglein 3. Autoimmunity. 2014;47(2):134–40.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Clucas J, Valderrama F. ERM proteins in cancer progression. J Cell Sci. 2014;127(Pt 2):267–75.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997;272(10):6525–33.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Davisson MT, Cook SA, Johnson KR, Eicher EM. Balding: a new mutation on mouse chromosome 18 causing hair loss and immunological defects. J Hered. 1994;85(2):134–6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. de Bruin A, Caldelari R, Williamson L, Suter MM, Hunziker T, Wyder M, Muller EJ. Plakoglobin-dependent disruption of the desmosomal plaque in pemphigus vulgaris. Exp Dermatol. 2007;16(6):468–75.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Delva E, Jennings JM, Calkins CC, Kottke MD, Faundez V, Kowalczyk AP. Pemphigus vulgaris IgG-induced desmoglein-3 endocytosis and desmosomal disassembly are mediated by a clathrin- and dynamin-independent mechanism. J Biol Chem. 2008;283(26):18303–13.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Esaki C, Seishima M, Yamada T, Osada K, Kitajima Y. Pharmacologic evidence for involvement of phospholipase C in pemphigus IgG-induced inositol 1,4,5-trisphosphate generation, intracellular calcium increase, and plasminogen activator secretion in DJM-1 cells, a squamous cell carcinoma line. J Invest Dermatol. 1995;105(3):329–33.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Frank J, Cserhalmi-Friedman PB, Ahmad W, Panteleyev AA, Aita VM, Christiano AM. Characterization of the desmosomal cadherin gene family: genomic organization of two desmoglein genes on human chromosome 18q12. Exp Dermatol. 2001;10(2):90–4.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Frusic-Zlotkin M, Raichenberg D, Wang X, David M, Michel B, Milner Y. Apoptotic mechanism in pemphigus autoimmunoglobulins-induced acantholysis – possible involvement of the EGF receptor. Autoimmunity. 2006;39(7):563–75.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gil MP, Modol T, Espana A, Lopez-Zabalza MJ. Inhibition of FAK prevents blister formation in the neonatal mouse model of pemphigus vulgaris. Exp Dermatol. 2012;21(4):254–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gliem M, Heupel WM, Spindler V, Harms GS, Waschke J. Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris. Am J Physiol Cell Physiol. 2010;299(3):C606–13.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Grando SA, Bystryn JC, Chernyavsky AI, Frusic-Zlotkin M, Gniadecki R, Lotti R, Milner Y, Pittelkow MR, Pincelli C. Apoptolysis: a novel mechanism of skin blistering in pemphigus vulgaris linking the apoptotic pathways to basal cell shrinkage and suprabasal acantholysis. Exp Dermatol. 2009;18(9):764–70.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Heupel WM, Engerer P, Schmidt E, Waschke J. Pemphigus vulgaris IgG cause loss of desmoglein-mediated adhesion and keratinocyte dissociation independent of epidermal growth factor receptor. Am J Pathol. 2009;174(2):475–85.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jolly PS, Berkowitz P, Bektas M, Lee HE, Chua M, Diaz LA, Rubenstein DS. p38MAPK signaling and desmoglein-3 internalization are linked events in pemphigus acantholysis. J Biol Chem. 2010;285(12):8936–41.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kanno M, Isa Y, Aoyama Y, Yamamoto Y, Nagai M, Ozawa M, Kitajima Y. P120-catenin is a novel desmoglein 3 interacting partner: identification of the p120-catenin association site of desmoglein 3. Exp Cell Res. 2008;314(8):1683–92.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kawasaki Y, Aoyama Y, Tsunoda K, Amagai M, Kitajima Y. Pathogenic monoclonal antibody against desmoglein 3 augments desmoglein 3 and p38 MAPK phosphorylation in human squamous carcinoma cell line. Autoimmunity. 2006;39(7):587–90.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kikuchi A, Kishida S, Yamamoto H. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med. 2006;38(1):1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kitajima Y. 150(th) anniversary series: desmosomes and autoimmune disease, perspective of dynamic desmosome remodeling and its impairments in pemphigus. Cell Commun Adhes. 2014;21(6):269–80.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kitajima Y, Aoyama Y, Seishima M. Transmembrane signaling for adhesive regulation of desmosomes and hemidesmosomes, and for cell-cell datachment induced by pemphigus IgG in cultured keratinocytes: involvement of protein kinase C. J Investig Dermatol Symp Proc. 1999;4(2):137–44.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Koch PJ, Mahoney MG, Ishikawa H, Pulkkinen L, Uitto J, Shultz L, Murphy GF, Whitaker-Menezes D, Stanley JR. Targeted disruption of the pemphigus vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell adhesion with a phenotype similar to pemphigus vulgaris. J Cell Biol. 1997;137(5):1091–102.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Koch PJ, Mahoney MG, Cotsarelis G, Rothenberger K, Lavker RM, Stanley JR. Desmoglein 3 anchors telogen hair in the follicle. J Cell Sci. 1998;111(Pt 17):2529–37.PubMedCentralPubMedGoogle Scholar
  36. Kong J, Li Y, Liu S, Jin H, Shang Y, Quan C, Li Y, Lin Z. High expression of ezrin predicts poor prognosis in uterine cervical cancer. BMC Cancer. 2013;13:520.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kountikov EI, Poe JC, Maclver NJ, Rathmell JC, Tedder TF. A spontaneous deletion within the desmoglein 3 extracellular domain of mice results in hypomorphic protein expression, immunodeficiency, and a wasting disease phenotype. Am J Pathol. 2015;185(3):617–30.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lee HE, Berkowitz P, Jolly PS, Diaz LA, Chua MP, Rubenstein DS. Biphasic activation of p38MAPK suggests that apoptosis is a downstream event in pemphigus acantholysis. J Biol Chem. 2009a;284(18):12524–32.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Lee JS, Yoon HK, Sohn KC, Back SJ, Kee SH, Seo YJ, Park JK, Kim CD, Lee JH. Expression of N-terminal truncated desmoglein 3 (deltaNDg3) in epidermis and its role in keratinocyte differentiation. Exp Mol Med. 2009b;41(1):42–50.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Li S, Couet J, Lisanti MP. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem. 1996;271(46):29182–90.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 1994;4(7):231–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Mao X, Sano Y, Park JM, Payne AS. p38 MAPK activation is downstream of the loss of intercellular adhesion in pemphigus vulgaris. J Biol Chem. 2011;286(2):1283–91.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Mao X, Li H, Sano Y, Gaestel M, Mo PJ, Payne AS. MAPKAP kinase 2 (MK2)-dependent and -independent models of blister formation in pemphigus vulgaris. J Invest Dermatol. 2014;134(1):68–76.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Novak A, Dedhar S. Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci. 1999;56(5–6):523–37.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem. 1998;273(10):5419–22.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Osada K, Seishima M, Kitajima Y. Pemphigus IgG activates and translocates protein kinase C from the cytosol to the particulate/cytoskeleton fractions in human keratinocytes. J Invest Dermatol. 1997;108(4):482–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Pelacho B, Natal C, Espana A, Sanchez-Carpintero I, Iraburu MJ, Lopez-Zabalza MJ. Pemphigus vulgaris autoantibodies induce apoptosis in HaCaT keratinocytes. FEBS Lett. 2004;566(1–3):6–10.CrossRefPubMedGoogle Scholar
  48. Pretel M, Espana A, Marquina M, Pelacho B, Lopez-Picazo JM, Lopez-Zabalza MJ. An imbalance in Akt/mTOR is involved in the apoptotic and acantholytic processes in a mouse model of pemphigus vulgaris. Exp Dermatol. 2009;18(9):771–80.CrossRefPubMedGoogle Scholar
  49. Pulkkinen L, Choi YW, Simpson A, Montagutelli X, Sundberg J, Uitto J, Mahoney MG. Loss of cell adhesion in Dsg3bal-Pas mice with homozygous deletion mutation (2079del14) in the desmoglein 3 gene. J Invest Dermatol. 2002;119(6):1237–43.CrossRefPubMedGoogle Scholar
  50. Rotzer V, Hartlieb E, Vielmuth F, Gliem M, Spindler V, Waschke J. E-cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion. Cell Mol Life Sci. 2015;72(24):4885–97.CrossRefPubMedGoogle Scholar
  51. Saito M, Stahley SN, Caughman CY, Mao X, Tucker DK, Payne AS, Amagai M, Kowalczyk AP. Signaling dependent and independent mechanisms in pemphigus vulgaris blister formation. PLoS One. 2012;7(12):e50696.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Schmidt E, Waschke J. Apoptosis in pemphigus. Autoimmun Rev. 2009;8(7):533–7.CrossRefPubMedGoogle Scholar
  53. Schmidt E, Gutberlet J, Siegmund D, Berg D, Wajant H, Waschke J. Apoptosis is not required for acantholysis in pemphigus vulgaris. Am J Physiol Cell Physiol. 2009;296(1):C162–72.CrossRefPubMedGoogle Scholar
  54. Schulze K, Galichet A, Sayar BS, Scothern A, Howald D, Zymann H, Siffert M, Zenhausern D, Bolli R, Koch PJ, Garrod D, Suter MM, Muller EJ. An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris. J Invest Dermatol. 2012;132(2):346–55.CrossRefPubMedGoogle Scholar
  55. Seishima M, Esaki C, Osada K, Mori S, Hashimoto T, Kitajima Y. Pemphigus IgG, but not bullous pemphigoid IgG, causes a transient increase in intracellular calcium and inositol 1,4,5-triphosphate in DJM-1 cells, a squamous cell carcinoma line. J Invest Dermatol. 1995;104(1):33–7.CrossRefPubMedGoogle Scholar
  56. Spindler V, Endlich A, Hartlieb E, Vielmuth F, Schmidt E, Waschke J. The extent of desmoglein 3 depletion in pemphigus vulgaris is dependent on Ca(2+)-induced differentiation: a role in suprabasal epidermal skin splitting? Am J Pathol. 2011;179(4):1905–16.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Thomason HA, Scothern A, McHarg S, Garrod DR. Desmosomes: adhesive strength and signalling in health and disease. Biochem J. 2010;429(3):419–33.CrossRefPubMedGoogle Scholar
  58. Tsang SM, Liu L, Teh MT, Wheeler A, Grose R, Hart IR, Garrod DR, Fortune F, Wan H. Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src. PLoS One. 2010;5(12):e14211.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Tsang SM, Brown L, Gadmor H, Gammon L, Fortune F, Wheeler A, Wan H. Desmoglein 3 acting as an upstream regulator of Rho GTPases, Rac-1/Cdc42 in the regulation of actin organisation and dynamics. Exp Cell Res. 2012a;318(18):2269–83.CrossRefPubMedGoogle Scholar
  60. Tsang SM, Brown L, Lin K, Liu L, Piper K, O’Toole EA, Grose R, Hart IR, Garrod DR, Fortune F, Wan H. Non-junctional human desmoglein 3 acts as an upstream regulator of Src in E-cadherin adhesion, a pathway possibly involved in the pathogenesis of pemphigus vulgaris. J Pathol. 2012b;227(1):81–93.CrossRefPubMedGoogle Scholar
  61. Vielmuth F, Waschke J, Spindler V. Loss of desmoglein binding is not sufficient for keratinocyte dissociation in pemphigus. J Invest Dermatol. 2015;135(12):3068–77.CrossRefPubMedGoogle Scholar
  62. Wan H, Lin K, Tsang SM, Uttagomol J. Evidence for Dsg3 in regulating Src signaling by competing with it for binding to caveolin-1. Data Brief. 2016;6:124–34.CrossRefPubMedGoogle Scholar
  63. Wang X, Bregegere F, Frusic-Zlotkin M, Feinmesser M, Michel B, Milner Y. Possible apoptotic mechanism in epidermal cell acantholysis induced by pemphigus vulgaris autoimmunoglobulins. Apoptosis. 2004;9(2):131–43.CrossRefPubMedGoogle Scholar
  64. Waschke J, Spindler V, Bruggeman P, Zillikens D, Schmidt G, Drenckhahn D. Inhibition of Rho A activity causes pemphigus skin blistering. J Cell Biol. 2006;175(5):721–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Williamson L, Raess NA, Caldelari R, Zakher A, de Bruin A, Posthaus H, Bolli R, Hunziker T, Suter MM, Muller EJ. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J. 2006;25(14):3298–309.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Williamson L, Suter MM, Olivry T, Wyder M, Muller EJ. Upregulation of c-Myc may contribute to the pathogenesis of canine pemphigus vulgaris. Vet Dermatol. 2007;18(1):12–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK