Skip to main content

RIG-I (Retinoic Acid Inducible Gene-I)

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chan YK, Gack MU. Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol. 2016;14(6):360–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui S, Eisenächer K, Kirchhofer A, Brzózka K, Lammens A, Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell. 2008;29(2):169–79.

    Article  PubMed  CAS  Google Scholar 

  • Duewell P, Steger A, Lohr H, Bourhis H, Hoelz H, Kirchleitner SV, Stieg MR, Grassmann S, Kobold S, Siveke JT, Endres S, Schnurr M. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells. Cell Death Differ. 2014;21(12):1825–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 2007;446(7138):916–20.

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Yang YK, Wang RP, Zhou X, Diao FC, Li MD, Zhai ZH, Jiang ZF, Chen DY. REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS One. 2009;4(6):e5760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gates LT, Shisler JL. cFLIPL interrupts IRF3–CBP–DNA interactions to inhibit IRF3-driven transcription. J Immunol. 2016;197(3):923–33.

    Article  PubMed  CAS  Google Scholar 

  • Horner SM, Liu HM, Park HS, Briley J, Gale Jr M. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci USA. 2011;108(35):14590–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell. 2011;146(3):448–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S. Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005;23(1):19–28.

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005;6(10):981–8.

    Article  PubMed  CAS  Google Scholar 

  • Lei CQ, Zhang Y, Xia T, Jiang LQ, Zhong B, Shu HB. FoxO1 negatively regulates cellular antiviral response by promoting degradation of IRF3. J Biol Chem. 2013;288(18):12596–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li S, Zheng H, Mao AP, Zhong B, Li Y, Liu Y, Gao Y, Ran Y, Tien P, Shu HB. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J Biol Chem. 2010;285(7):4291–7.

    Article  PubMed  CAS  Google Scholar 

  • Li MT, Di W, Xu H, Yang YK, Chen HW, Zhang FX, Zhai ZH, Chen DY. Negative regulation of RIG-I-mediated innate antiviral signaling by SEC14L1. J Virol. 2013;87(18):10037–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Cai X, Zhang D, Xu C, Xiao W. Zebrafish foxo3b negatively regulates antiviral response through suppressing the transactivity of irf3 and irf7. J Immunol. 2016;197(12):4736–49.

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY, Hu F, Herr AB, Strong RK, Kao CC, Li P. The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure. 2010;18(8):1032–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maharaj NP, Wies E, Stoll A, Gack MU. Conventional protein kinase C-α (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction. J Virol. 2012;86(3):1358–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao AP, Li S, Zhong B, Li Y, Yan J, Li Q, Teng C, Shu HB. Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-beta (IFN-beta) and cellular antiviral response. J Biol Chem. 2010;285(13):9470–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature. 2005;437(7062):1167–72.

    Article  PubMed  CAS  Google Scholar 

  • Nazmi A, Mukhopadhyay R, Dutta K, Basu A. STING mediates neuronal innate immune response following Japanese encephalitis virus infection. Sci Rep. 2012;2:347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel JR, Jain A, Chou YY, Baum A, Ha T, García-Sastre A. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO Rep. 2013;14(9):780–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peisley A, Wu B, Yao H, Walz T, Hur S. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol Cell. 2013;51(5):573–83.

    Article  PubMed  CAS  Google Scholar 

  • Rajsbaum R, García-Sastre A, Versteeg GA. TRIMmunity: The roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. Mol Biol. 2014;426(6):1265–84.

    Article  CAS  Google Scholar 

  • Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, Akira S, Fujita T, Gale Jr M. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci USA. 2007;104(2):582–7.

    Article  PubMed  CAS  Google Scholar 

  • Schlee M, Hartmann G. The chase for the RIG-I ligand—recent advances. Mol Ther. 2010;18(7):1254–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005;122(5):669–82.

    Article  PubMed  CAS  Google Scholar 

  • Sumpter Jr R, Loo YM, Foy E, Li K, Yoneyama M, Fujita T, Lemon SM, Gale Jr M. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase. RIG-I J Virol. 2005;79(5):2689–99.

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Ren H, Liu Y, Teeling JL, Gu J. Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. J Virol. 2011;85(2):1036–47. https://doi.org/10.1128/JVI.01734-10.

    Article  PubMed  CAS  Google Scholar 

  • Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita R, Gale Jr M, Inagaki F, Fujita T. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell. 2008;29(4):428–40.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010 Mar 19;140(6):805–20. https://doi.org/10.1016/j.cell.2010.01.022.

    Article  PubMed  CAS  Google Scholar 

  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell. 2005;19(6):727–40.

    Article  PubMed  CAS  Google Scholar 

  • Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ, Jiang QX. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. elife. 2014;3:e01489.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wang W, Li Y, Zhou X, Yin Y, Wang Y, de Man RA, van der Laan LJ, Huang F, Kamar N, Peppelenbosch MP, Pan Q RIG-I is a key antiviral interferon-stimulated gene against hepatitis E virus dispensable of interferon production. Hepatology 2017. https://doi.org/10.1002/hep.29105.

  • Yang YK, Qu H, Gao D, Di W, Chen HW, Guo X, Zhai ZH, Chen DY. RF-like protein 16 (ARL16) inhibits RIG-I by binding with its C-terminal domain in a GTP-dependent manner. J Biol Chem. 2011;286(12):10568–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004 Jul;5(7):730–7.

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Onomoto K, Jogi M, Akaboshi T, Fujita T. Viral RNA detection by RIG-I-like receptors. Curr Opin Immunol. 2015;32:48–53. https://doi.org/10.1016/j.coi.2014.12.012. Epub 2015 Jan 14.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang C, Schook LB, Hawken RJ, Rutherford MS. An RNA helicase, RHIV -1, induced by porcine reproductive and respiratory syndrome virus (PRRSV) is mapped on porcine chromosome 10q13. Microb Pathog. 2000;28(5):267–78.

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Xu W-Y, Hu Z, Zhang H, Shen Y, Lu S, Wei C, Wang Z-G. RNA virus receptor Rig-I monitors gut microbiota and inhibit colitis-associated colorectal cancer. J Exp Clin Cancer Res. 2017;36:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh Muhammad Atif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdullah, N., Atif, S.M. (2018). RIG-I (Retinoic Acid Inducible Gene-I). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101512

Download citation

Publish with us

Policies and ethics