Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Receptor-Interacting Protein Kinase

  • Muhammad Ayaz Anwar
  • Sangdun ChoiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101494


Historical Background

Receptor-interacting protein kinases (RIPKs) fall under the category of serine/threonine protein kinases that not only share architectural organization but also have functional similarities. The significant and shared physiological functions of these kinases include cell death regulation, inflammation, and cell differentiation. These kinases are closely similar to interleukin-(IL)-1...

This is a preview of subscription content, log in to check access.



This work was supported by the National Research Foundation of Korea (NRF-2015R1A2A2A09001059).


  1. Anand VS, Braithwaite SP. LRRK2 in Parkinson’s disease: biochemical functions. FEBS J. 2009;276(22):6428–35.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Chen L, Haider K, Ponda M, Cariappa A, Rowitch D, Pillai S. Protein kinase C-associated kinase (PKK), a novel membrane-associated, ankyrin repeat-containing protein kinase. J Biol Chem. 2001;276(24):21737–44.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, Cheng G. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature. 2002;416(6877):190–4.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell. 2009;138(2):229–32.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Greggio E, Lewis PA, van der Brug MP, Ahmad R, Kaganovich A, Ding J, et al. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J Neurochem. 2007;102(1):93–102.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Haugarvoll K, Toft M, Ross OA, White LR, Aasly JO, Farrer MJ. Variants in the LRRK1 gene and susceptibility to Parkinson’s disease in Norway. Neurosci Lett. 2007;416(3):299–301.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Holland P, Willis C, Kanaly S, Glaccum M, Warren A, Charrier K, et al. RIP4 is an ankyrin repeat-containing kinase essential for keratinocyte differentiation. Curr Biol. 2002;12(16):1424–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 1996a;4(4):387–96.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 1996b;84(2):299–308.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Huang X, McGann JC, Liu BY, Hannoush RN, Lill JR, Pham V, et al. Phosphorylation of dishevelled by protein kinase RIPK4 regulates Wnt signaling. Science. 2013;339(6126):1441–5.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Inohara N, del Peso L, Koseki T, Chen S, Nunez G. RICK, a novel protein kinase containing a caspase recruitment domain, interacts with CLARP and regulates CD95-mediated apoptosis. J Biol Chem. 1998;273(20):12296–300.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ishikawa K, Nara A, Matsumoto K, Hanafusa H. EGFR-dependent phosphorylation of leucine-rich repeat kinase LRRK1 is important for proper endosomal trafficking of EGFR. Mol Biol Cell. 2012;23(7):1294–306.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity. 1998;8(3):297–303.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature. 2002;416(6877):194–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Krieg A, Correa RG, Garrison JB, Le Negrate G, Welsh K, Huang Z, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci U S A. 2009a;106(34):14524–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Krieg A, Le Negrate G, Reed JC. RIP2-beta: a novel alternative mRNA splice variant of the receptor interacting protein kinase RIP2. Mol Immunol. 2009b;46(6):1163–70.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Lawrence CP, Chow SC. FADD deficiency sensitises Jurkat T cells to TNF-alpha-dependent necrosis during activation-induced cell death. FEBS Lett. 2005;579(28):6465–72.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Lee TH, Shank J, Cusson N, Kelliher MA. The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem. 2004;279(32):33185–91.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Li J, Tian J, Ma Y, Cen H, Leng RX, Lu MM, et al. Association of RIP2 gene polymorphisms and systemic lupus erythematosus in a Chinese population. Mutagenesis. 2012;27(3):319–22.PubMedPubMedCentralCrossRefGoogle Scholar
  20. McCarthy JV, Ni J, Dixit VM. RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase. J Biol Chem. 1998;273(27):16968–75.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Meylan E, Martinon F, Thome M, Gschwendt M, Tschopp J. RIP4 (DIK/PKK), a novel member of the RIP kinase family, activates NF-kappa B and is processed during apoptosis. EMBO Rep. 2002;3(12):1201–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181–90.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FK. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 2015;6:e1636.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Muto A, Ruland J, McAllister-Lucas LM, Lucas PC, Yamaoka S, Chen FF, et al. Protein kinase C-associated kinase (PKK) mediates Bcl10-independent NF-kappa B activation induced by phorbol ester. J Biol Chem. 2002;277(35):31871–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Nembrini C, Kisielow J, Shamshiev AT, Tortola L, Coyle AJ, Kopf M, et al. The kinase activity of Rip2 determines its stability and consequently Nod1- and Nod2-mediated immune responses. J Biol Chem. 2009;284(29):19183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Newton K, Sun X, Dixit VM. Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol. 2004;24(4):1464–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44(4):595–600.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Pazdernik NJ, Donner DB, Goebl MG, Harrington MA. Mouse receptor interacting protein 3 does not contain a caspase-recruiting or a death domain but induces apoptosis and activates NF-kappaB. Mol Cell Biol. 1999;19(10):6500–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Rodriguez DA, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon CP, et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 2016;23(1):76–88.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Sanna-Cherchi S, Sampogna RV, Papeta N, Burgess KE, Nees SN, Perry BJ, et al. Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med. 2013;369(7):621–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Schulte EC, Ellwanger DC, Dihanich S, Manzoni C, Stangl K, Schormair B, et al. Rare variants in LRRK1 and Parkinson’s disease. Neurogenetics. 2014;15(1):49–57.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Shameer K, Denny JC, Ding K, Jouni H, Crosslin DR, de Andrade M, et al. A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet. 2014;133(1):95–109.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell. 1995;81(4):513–23.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW. ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr Biol. 2009;19(15):1255–63.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Varfolomeev EE, Boldin MP, Goncharov TM, Wallach D. A potential mechanism of “cross-talk” between the p55 tumor necrosis factor receptor and Fas/APO1: proteins binding to the death domains of the two receptors also bind to each other. J Exp Med. 1996;183(3):1271–5.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin Jr AS. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281(5383):1680–3.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430(7000):694–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol. 2009;10(4):348–55.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Wu S, Kanda T, Nakamoto S, Imazeki F, Yokosuka O. Knockdown of receptor-interacting serine/threonine protein kinase-2 (RIPK2) affects EMT-associated gene expression in human hepatoma cells. Anticancer Res. 2012;32(9):3775–83.PubMedPubMedCentralGoogle Scholar
  40. Yin X, Krikorian P, Logan T, Csizmadia V. Induction of RIP-2 kinase by proinflammatory cytokines is mediated via NF-kappaB signaling pathways and involves a novel feed-forward regulatory mechanism. Mol Cell Biochem. 2010;333(1-2):251–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Zha J, Zhou Q, Xu LG, Chen D, Li L, Zhai Z, et al. RIP5 is a RIP-homologous inducer of cell death. Biochem Biophys Res Commun. 2004;319(2):298–303.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Zhang D, Lin J, Han J. Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol. 2010;7(4):243–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Molecular Science and TechnologyAjou UniversitySuwonKorea