Aging and Malignant Hemopathies: A Complex Multistep Process

  • Vu Luan Dang ChiEmail author
  • Catherine Sibille
  • Karen Willard-Gallo
  • Dominique Bron
Living reference work entry


The probability of developing cancer, primarily malignant hemopathies, increases with age. This complex relationship between cancer and aging has been extensively studied; cellular senescence, a protective mechanism in response to DNA damage, can induce permanent growth arrest and resistance to apoptosis. Chronological age also favors the accumulation of genetic and epigenetic changes that are important contributing factors in the complex pathogenesis of cancer. Other age-related mechanisms such as impairment of cancer prevention and clonal restriction of hematopoietic stem cells also lead to the development of cancer. However, a full understanding of the process of aging is far from complete with many open questions currently under investigation. This review will focus on the complex multistep interplay between aging and a higher incidence of malignant hemopathies.


Aging Elderly Tumor suppressor genes Malignant hemopathies Hematopoietic stem cell Epigenetics Senescence DNA damage repair 


  1. André T, Meuleman N, Stamatopoulos B, De Bruyn C, Pieters K, Bron D, Lagneaux L (2013) Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLoS One 8(3):e59756CrossRefPubMedPubMedCentralGoogle Scholar
  2. André T, Najar M, Stamatopoulos B, Pieters K, Pradier O, Bron D, Meuleman N, Lagneaux L (2015) Immune impairments in multiple myeloma bone marrow mesenchymal stromal cells. Cancer Immunol Immunother 64(2):213–224CrossRefPubMedGoogle Scholar
  3. Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ (2013) Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12(4):413–425CrossRefPubMedGoogle Scholar
  4. Ben-Porath I, Weinberg RA (2004) When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113:8–13CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976CrossRefPubMedGoogle Scholar
  6. Bron D, Soubeyran P, Fulop T (2016) Innovative approach to older patients with malignant hemopathies. Haematologica 101(6):1–3Google Scholar
  7. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245CrossRefPubMedGoogle Scholar
  8. Capparelli C, Guido C, Whitaker-Menezes D et al (2012) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11(12):2285–2302CrossRefPubMedPubMedCentralGoogle Scholar
  9. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, Liang S, Lu Y, Darlington GJ, Meissner A, Issa JP, Godley LA, Li W, Goodell MA (2011) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44(1):23–31CrossRefPubMedPubMedCentralGoogle Scholar
  10. Challen GA, Sun D, Mayle A, Jeong M, Luo M, Rodriguez B, Mallaney C, Celik H, Yang L, Xia Z, Cullen S, Berg J, Zheng Y, Darlington GJ, Li W, Goodell MA (2014) Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15(3):350–364CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8):e201CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheng W-H, Muftic D, Muftuoglu M et al (2008) WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 19:3923–3933CrossRefPubMedPubMedCentralGoogle Scholar
  13. Coppé J-P, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868CrossRefGoogle Scholar
  14. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367CrossRefPubMedGoogle Scholar
  15. Djeghloul D, Kuranda K, Kuzniak I, Barbieri D, Naguibneva I, Choisy C, Bories JC, Dosquet C, Pla M, Vanneaux V, Socie G, Porteu F, Garrick D, Goodhardt M (2016) Age-associated decrease of the histone methyltransferase SUV39H1 in HSC perturbs heterochromatin and B lymphoid differentiation. Stem Cell Rep 6(6):970–984CrossRefGoogle Scholar
  16. Donehower LA (2002) Does p53 affect organismal aging? J Cell Physiol 192:23–33CrossRefPubMedGoogle Scholar
  17. Donehower LA, Harvey M, Slagle BL et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221CrossRefPubMedGoogle Scholar
  18. Fenton M, Barker S, Kurz DJ et al (2001) Cellular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries. Arterioscler Thromb Vasc Biol 21:220–226CrossRefPubMedGoogle Scholar
  19. Florian MC, Dorr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K, Zheng Y, Geiger H (2012a) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10(5):520–530CrossRefPubMedPubMedCentralGoogle Scholar
  20. Florian MC, Dörr K, Niebel A et al (2012b) CDC42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10:520–530CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fulop T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271CrossRefPubMedPubMedCentralGoogle Scholar
  22. Garcia-Cao I, Garcia-Cao M, Martin-Caballero J et al (2002) “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21:6225–6235CrossRefPubMedPubMedCentralGoogle Scholar
  23. Garcia-Cao I, Song MS, Hobbs RM et al (2012) Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 149:49–62CrossRefPubMedPubMedCentralGoogle Scholar
  24. Geiger H, de Haan G, Florian MC et al (2013) The ageing hematopoietic stem cell compartment. Nat Rev Immunol 13:376–389CrossRefPubMedGoogle Scholar
  25. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, Purcell SM, Svantesson O, Landen M, Hoglund M, Lehmann S, Gabriel SB, Moran JL, Lander ES, Sullivan PF, Sklar P, Gronberg H, Hultman CM, McCarroll SA (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goodhardt M Garrick D, Dang Luan, Salaroli A, D Bron (2018) Hematopietic stem cell aging and malignant hemopathies. Geriatric Oncology. Exterman M (ed) (in press)Google Scholar
  27. Gosselin K, Martien S, Pourtier A et al (2009) Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res 69:7917–7925CrossRefPubMedGoogle Scholar
  28. Haber DA (1997) Splicing into senescence: the curious case of p16 and p19ARF. Cell 91:555–558CrossRefPubMedGoogle Scholar
  29. Herbig U, Ferreira M, Condel L et al (2006) Cellular senescence in aging primates. Science 311:1257CrossRefPubMedGoogle Scholar
  30. Hidalgo I, Herrera-Merchan A, Ligos JM, Carramolino L, Nunez J, Martinez F, Dominguez O, Torres M, Gonzalez S (2012) Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell 11(5):649–662CrossRefPubMedGoogle Scholar
  31. Issa J-P (2014) Aging and epigenetic drift: a vicious cycle. J Clin Invest 124:24–29CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jaiswal S, Fontanillas P, Flannick J et al (2014a) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498. Age related clonal hematopoiesis is frequent and associated with an increased risk of hematological cancerCrossRefPubMedPubMedCentralGoogle Scholar
  33. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL (2014b) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488–2498CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jeyapalan JC, Sedivy JM (2008) Cellular senescence and organismal aging. Mech Ageing Dev 129:467–474CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jeyapalan JC, Ferreira M, Sedivy JM et al (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44CrossRefPubMedGoogle Scholar
  36. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705CrossRefPubMedGoogle Scholar
  37. Lee SC, Miller S, Hyland C, Kauppi M, Lebois M, Di Rago L, Metcalf D, Kinkel SA, Josefsson EC, Blewitt ME, Majewski IJ, Alexander WS (2015) Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis. Blood 126(2): 167–175CrossRefPubMedGoogle Scholar
  38. Maier B, Gluba W, Bernier B et al (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18:306–319CrossRefPubMedPubMedCentralGoogle Scholar
  39. Matthews C, Gorenne I, Scott S et al (2006) Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 99:156–164CrossRefPubMedGoogle Scholar
  40. Minamino T, Miyauchi H, Yoshida T et al (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105:1541–1544CrossRefPubMedGoogle Scholar
  41. Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452CrossRefPubMedPubMedCentralGoogle Scholar
  42. Morin RD, Johnson NA, Severson TM et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42:181–185CrossRefPubMedPubMedCentralGoogle Scholar
  43. Muto T, Okazaki I, Yamada S et al (2006) Negative regulation of activation-induced cytidine deaminase in B cells. Proc Natl Acad Sci USA 103:2752–2757CrossRefPubMedGoogle Scholar
  44. Nicolai S, Rossi A, Di Daniele N et al (2015) DNA repair and aging: the impact of p53 family. Aging 7(12):1050–1065CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ortega-Molina A, Serrano M (2013) PTEN in cancer, metabolism, and aging. Trends Endocrinol Metab 24:184–189CrossRefPubMedGoogle Scholar
  46. Ortega-Molina A, Efeyan A, Lopez-Guadamillas E et al (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 15:382–394CrossRefPubMedGoogle Scholar
  47. Pereira S, Bourgeois P, Navarro C et al (2008) HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches. Mech Ageing Dev 129:449–459CrossRefPubMedGoogle Scholar
  48. Price JS, Waters JG, Darrah C et al (2002) The role of chondrocyte senescence in osteoarthritis. Aging Cell 1:57–65CrossRefPubMedGoogle Scholar
  49. Ressler S, Bartkova J, Niederegger H et al (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5:379–389CrossRefPubMedGoogle Scholar
  50. Rocco JW, Sidransky D (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 264:42–55CrossRefPubMedGoogle Scholar
  51. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 102(26):9194–9199CrossRefPubMedGoogle Scholar
  52. Roulland S, Navarro J-M, Grenot P et al (2006) Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med 203:2425–2431CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rübe CE, Fricke A, Widmann TA et al (2011) Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One 6:e17487CrossRefPubMedPubMedCentralGoogle Scholar
  54. Satyanarayana A, Wiemann SU, Buer J et al (2003) Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells. EMBO J 22:4003–4013CrossRefPubMedPubMedCentralGoogle Scholar
  55. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707CrossRefPubMedGoogle Scholar
  56. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408CrossRefPubMedGoogle Scholar
  57. Sugiko W, Shimpei K, Noako O, Eiji H (2017) Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 108(4):563–569CrossRefGoogle Scholar
  58. Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, Wang H, Le T, Faull KF, Chen R, Gu H, Bock C, Meissner A, Gottgens B, Darlington GJ, Li W, Goodell MA (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14(5):673–688CrossRefPubMedPubMedCentralGoogle Scholar
  59. Taiwo O, Wilson GA, Emmett W, Morris T, Bonnet D, Schuster E, Adejumo T, Beck S, Pearce DJ (2013) DNA methylation analysis of murine hematopoietic side population cells during aging. Epigenetics 8(10):1114–1122CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tyner SD, Venkatachalam S, Choi J et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53CrossRefPubMedGoogle Scholar
  61. Vandenberk B, Brouwers B, Hatse S et al (2011) p16INK4a: a central player in cellular senescence and a promising aging biomarker in elderly cancer patients. J Geriatr Oncol 2:259–269CrossRefGoogle Scholar
  62. Wang C, Liu Y, Xu LT et al (2014) Effects of aging, cytomegalovirus infection, and EBV infection on human B cell repertoires. J Immunol 192:603–611CrossRefPubMedGoogle Scholar
  63. Welch JS, Ley TJ, Link DC et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150:264–278CrossRefPubMedPubMedCentralGoogle Scholar
  64. Whibley C, Pharoah PD, Hollstein M (2009) Nat Rev Cancer 9:95–107CrossRefPubMedGoogle Scholar
  65. Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478. Blood cells of more than 2% of individuals contain mutations that may represent premalignant events that cause clonal hematopoietic expansion. More importantly, this rate grows with ageCrossRefPubMedPubMedCentralGoogle Scholar
  66. Xie H, Xu J, Hsu JH, Nguyen M, Fujiwara Y, Peng C, Orkin SH (2014a) Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 14(1):68–80CrossRefPubMedGoogle Scholar
  67. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA, Ozenberger BA, Welch JS, Link DC, Walter MJ, Mardis ER, Dipersio JF, Chen F, Wilson RK, Ley TJ, Ding L (2014b) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478CrossRefPubMedPubMedCentralGoogle Scholar
  68. Xue W, Zender L, Miething C et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zucca E, Bertoni F, Vannata B et al (2014) Emerging role of infectious etiologies in the pathogenesis of marginal zone B-cell lymphomas. Clin Cancer Res 20:5207–5216CrossRefPubMedGoogle Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  • Vu Luan Dang Chi
    • 1
    • 2
    • 4
    Email author
  • Catherine Sibille
    • 3
  • Karen Willard-Gallo
    • 2
  • Dominique Bron
    • 1
    • 4
  1. 1.Clinical and Experimental HematologyInstitut Jules Bordet, ULBBrusselsBelgium
  2. 2.Molecular Immunology UnitInstitut Jules Bordet, ULBBrusselsBelgium
  3. 3.Anatomo-pathology DepartmentInstitut Jules Bordet, ULBBrusselsBelgium
  4. 4.Department of HematologyInstitut Jules Bordet, ULBBrusselsBelgium

Personalised recommendations