Advertisement

Role of Cytomegalovirus in Driving Cytotoxic CD28null T Cells

  • Alejandra Pera
  • Aalia Bano
  • Florian Kern
Living reference work entry

Abstract

Accumulation of CD28null T cells has been traditionally considered a sign of aging, as the percentage of these cells is increased in the elderly. However, the permanent loss of CD28 on T cells is caused by chronic antigenic stimulation. In that sense, CMV infection seems to be an important factor, particularly in the CD4 T-cell compartment, where significant expansions of these cells have been observed in CMV-seropositive individuals only and independently of age. In contrast to this, the CD28null CD8 T-cell subset is more heterogeneous, consisting of different type of cells with diverse origins, phenotype, and functions. Indeed, contrarily to their CD4 counterparts, CD28null CD8 T cells can be found expanded in the absence of CMV. CD28null CD4 T cells are cytotoxic and produce high amounts of pro-inflammatory cytokines. Expansions of these cells has been shown to be associated with many diseases and seems to have a relevant role in CVD (cardiovascular diseases). We, therefore, propose that CMV-related CVD risk may be mediated in part by CD28null CD4 T-cells, capable of damaging the vasculature.

Keywords

CD28null T cells CD57 CMV infection Age Cardiovascular disease 

References

  1. Adams AB, Ford ML, Larsen CP (2016) Costimulation blockade in autoimmunity and transplantation: the CD28 pathway. J Immunol 197(6):2045–2050.  https://doi.org/10.4049/jimmunol.1601135CrossRefPubMedPubMedCentralGoogle Scholar
  2. Airo P, Scarsi M (2013) Targeting CD4+CD28- T cells by blocking CD28 co-stimulation. Trends Mol Med 19(1):1–2.  https://doi.org/10.1016/j.molmed.2012.10.013CrossRefPubMedGoogle Scholar
  3. Akbar AN, Fletcher JM (2005) Memory T cell homeostasis and senescence during aging. Curr Opin Immunol 17(5):480–485.  https://doi.org/10.1016/j.coi.2005.07.019CrossRefPubMedGoogle Scholar
  4. Almanzar G, Schwaiger S, Jenewein B, Keller M, Herndler-Brandstetter D, Würzner R, Schönitzer D, Grubeck-Loebenstein B (2005) Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 79(6):3675–3683.  https://doi.org/10.1128/jvi.79.6.3675-3683.2005CrossRefPubMedPubMedCentralGoogle Scholar
  5. Antona D, Lepoutre A, Fonteneau L, Baudon C, Halftermeyer-Zhou F, LES Y, Levy-Bruhl D (2017) Seroprevalence of cytomegalovirus infection in France in 2010. Epidemiol Infect 145(7):1471–1478.  https://doi.org/10.1017/S0950268817000103CrossRefPubMedGoogle Scholar
  6. Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A, Waters A, Easterbrook P, Grey P, Smith D, McMichael AJ, Cooper DA, Rowland-Jones SL, Kelleher AD (2002) Characterization of CD4(+) CTLs ex vivo. J Immunol 168(11):5954–5958.  https://doi.org/10.4049/jimmunol.168.11.5954CrossRefPubMedGoogle Scholar
  7. Appay V, van Lier RA, Sallusto F, Roederer M (2008) Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73(11):975–983.  https://doi.org/10.1002/cyto.a.20643CrossRefPubMedGoogle Scholar
  8. Bandrés E, Merino J, Vázquez B, Inogés S, Moreno C, Subirá ML, Sánchez-Ibarrola A (2000) The increase of IFN-gamma production through aging correlates with the expanded CD8(+high)CD28(−)CD57(+) subpopulation. Clin Immunol 96(3):230–235.  https://doi.org/10.1006/clim.2000.4894CrossRefPubMedGoogle Scholar
  9. Barnabe C, Martin BJ, Ghali WA (2011) Systematic review and meta-analysis: anti-tumor necrosis factor alpha therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res 63(4):522–529.  https://doi.org/10.1002/acr.20371CrossRefGoogle Scholar
  10. Bason C, Corrocher R, Lunardi C, Puccetti P, Olivieri O, Girelli D, Navone R, Beri R, Millo E, Margonato A, Martinelli N, Puccetti A (2003) Interaction of antibodies against cytomegalovirus with heat-shock protein 60 in pathogenesis of atherosclerosis. Lancet 362(9400):1971–1977.  https://doi.org/10.1016/S0140-6736(03)15016-7CrossRefPubMedGoogle Scholar
  11. Bate SL, Dollard SC, Cannon MJ (2010) Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988–2004. Clin Infect Dis 50(11):1439–1447.  https://doi.org/10.1086/652438CrossRefPubMedGoogle Scholar
  12. Beersma MF, Bijlmakers MJ, Ploegh HL (1993) Human cytomegalovirus down-regulates HLA class I expression by reducing the stability of class I H chains. J Immunol 151(9):4455–4464PubMedGoogle Scholar
  13. Beswick M, Pachnio A, Lauder SN, Sweet C, Moss PA (2013) Antiviral therapy can reverse the development of immune senescence in elderly mice with latent cytomegalovirus infection. J Virol 87(2):779–789.  https://doi.org/10.1128/JVI.02427-12CrossRefPubMedPubMedCentralGoogle Scholar
  14. Betjes MG (2016) Clinical consequences of circulating CD28-negative T cells for solid organ transplantation. Transpl Int 29(3):274–284.  https://doi.org/10.1111/tri.12658CrossRefPubMedGoogle Scholar
  15. Boucher N, Dufeu-Duchesne T, Vicaut E, Farge D, Effros RB, Schachter F (1998) CD28 expression in T cell aging and human longevity. Exp Gerontol 33(3):267–282CrossRefPubMedGoogle Scholar
  16. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101(7):2711–2720.  https://doi.org/10.1182/blood-2002-07-2103CrossRefPubMedGoogle Scholar
  17. Broadley I, Pera A, Morrow G, Davies KA, Kern F (2017) Expansions of cytotoxic CD4(+)CD28(−) T cells drive excess cardiovascular mortality in rheumatoid arthritis and other chronic inflammatory conditions and are triggered by CMV infection. Front Immunol 8:195.  https://doi.org/10.3389/fimmu.2017.00195CrossRefPubMedPubMedCentralGoogle Scholar
  18. Casado JG, Soto R, DelaRosa O, Peralbo E, del Carmen Munoz-Villanueva M, Rioja L, Pena J, Solana R, Tarazona R (2005) CD8 T cells expressing NK associated receptors are increased in melanoma patients and display an effector phenotype. Cancer Immunol Immunother 54(12):1162–1171.  https://doi.org/10.1007/s00262-005-0682-5CrossRefPubMedGoogle Scholar
  19. Characiejus D, Pasukoniene V, Kazlauskaite N, Valuckas KP, Petraitis T, Mauricas M, Den Otter W (2002) Predictive value of CD8highCD57+ lymphocyte subset in interferon therapy of patients with renal cell carcinoma. Anticancer Res 22(6B):3679–3683PubMedGoogle Scholar
  20. Characiejus D, Pasukoniene V, Jonusauskaite R, Azlauskaite N, Aleknavicius E, Mauricas M, Otter WD (2008) Peripheral blood CD8highCD57+ lymphocyte levels may predict outcome in melanoma patients treated with adjuvant interferon-alpha. Anticancer Res 28(2B):1139–1142PubMedGoogle Scholar
  21. Chen G, Lustig A, Weng NP (2013) T cell aging: a review of the transcriptional changes determined from genome-wide analysis. Front Immunol 4:121.  https://doi.org/10.3389/fimmu.2013.00121CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chong LK, Aicheler RJ, Llewellyn-Lacey S, Tomasec P, Brennan P, Wang EC (2008) Proliferation and interleukin 5 production by CD8hi CD57+ T cells. Eur J Immunol 38(4):995–1000.  https://doi.org/10.1002/eji.200737687CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cicin-Sain L, Brien JD, Uhrlaub JL, Drabig A, Marandu TF, Nikolich-Zugich J (2012) Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog 8(8):e1002849.  https://doi.org/10.1371/journal.ppat.1002849CrossRefPubMedPubMedCentralGoogle Scholar
  24. Czesnikiewicz-Guzik M, Lee WW, Cui D, Hiruma Y, Lamar DL, Yang ZZ, Ouslander JG, Weyand CM, Goronzy JJ (2008) T cell subset-specific susceptibility to aging. Clin Immunol 127(1):107–118.  https://doi.org/10.1016/j.clim.2007.12.002CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dixon WG, Watson KD, Lunt M, Hyrich KL, British Society for Rheumatology Biologics Register Control Centre Consortium, Silman AJ, Symmons DP, British Society for Rheumatology Biologics Register (2007) Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum 56(9):2905–2912.  https://doi.org/10.1002/art.22809CrossRefPubMedPubMedCentralGoogle Scholar
  26. Djaoud Z, Riou R, Gavlovsky PJ, Mehlal S, Bressollette C, Gerard N, Gagne K, Charreau B, Retiere C (2016) Cytomegalovirus-infected primary endothelial cells trigger NKG2C+ natural killer cells. J Innate Immun 8:374.  https://doi.org/10.1159/000445320CrossRefPubMedGoogle Scholar
  27. Duftner C, Dejaco C, Hengster P, Bijuklic K, Joannidis M, Margreiter R, Schirmer M (2012) Apoptotic effects of antilymphocyte globulins on human pro-inflammatory CD4+CD28- T-cells. PLoS One 7(3):e33939.  https://doi.org/10.1371/journal.pone.0033939CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dumitriu IE (2015) The life (and death) of CD4+ CD28(null) T cells in inflammatory diseases. Immunology 146(2):185–193.  https://doi.org/10.1111/imm.12506CrossRefPubMedPubMedCentralGoogle Scholar
  29. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (2016) CD28 costimulation: from mechanism to therapy. Immunity 44(5):973–988.  https://doi.org/10.1016/j.immuni.2016.04.020CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, Franceschi C, Passeri M, Sansoni P (1996) Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology 88(4):501–507CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fann M, Chiu WK, Wood WH 3rd, Levine BL, Becker KG, Weng NP (2005) Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T-cell aging. Immunol Rev 205:190–206.  https://doi.org/10.1111/j.0105-2896.2005.00262.xCrossRefPubMedGoogle Scholar
  32. Fasth AE, Bjorkstrom NK, Anthoni M, Malmberg KJ, Malmstrom V (2010) Activating NK-cell receptors co-stimulate CD4(+)CD28(−) T cells in patients with rheumatoid arthritis. Eur J Immunol 40(2):378–387.  https://doi.org/10.1002/eji.200939399CrossRefPubMedGoogle Scholar
  33. Fenoglio D, Ferrera F, Fravega M, Balestra P, Battaglia F, Proietti M, Andrei C, Olive D, Antonio LC, Indiveri F, Filaci G (2008) Advancements on phenotypic and functional characterization of non-antigen-specific CD8+CD28- regulatory T cells. Hum Immunol 69(11):745–750.  https://doi.org/10.1016/j.humimm.2008.08.282CrossRefPubMedGoogle Scholar
  34. Filaci G, Fenoglio D, Fravega M, Ansaldo G, Borgonovo G, Traverso P, Villaggio B, Ferrera A, Kunkl A, Rizzi M, Ferrera F, Balestra P, Ghio M, Contini P, Setti M, Olive D, Azzarone B, Carmignani G, Ravetti JL, Torre G, Indiveri F (2007) CD8+ CD28- T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol 179(7):4323–4334CrossRefPubMedGoogle Scholar
  35. Frassanito MA, Silvestris F, Cafforio P, Dammacco F (1998) CD8+/CD57 cells and apoptosis suppress T-cell functions in multiple myeloma. Br J Haematol 100(3):469–477CrossRefPubMedGoogle Scholar
  36. Goronzy JJ, Lee WW, Weyand CM (2007) Aging and T-cell diversity. Exp Gerontol 42(5):400–406.  https://doi.org/10.1016/j.exger.2006.11.016CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hecker M, Qiu D, Marquardt K, Bein G, Hackstein H (2004) Continuous cytomegalovirus seroconversion in a large group of healthy blood donors. Vox Sang 86(1):41–44CrossRefPubMedGoogle Scholar
  38. Hegde NR, Dunn C, Lewinsohn DM, Jarvis MA, Nelson JA, Johnson DC (2005) Endogenous human cytomegalovirus gB is presented efficiently by MHC class II molecules to CD4+ CTL. J Exp Med 202(8):1109–1119.  https://doi.org/10.1084/jem.20050162CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ho DD, Rota TR, Andrews CA, Hirsch MS (1984) Replication of human cytomegalovirus in endothelial cells. J Infect Dis 150(6):956–957CrossRefPubMedGoogle Scholar
  40. Hodge G, Mukaro V, Reynolds PN, Hodge S (2011) Role of increased CD8/CD28(null) T cells and alternative co-stimulatory molecules in chronic obstructive pulmonary disease. Clin Exp Immunol 166(1):94–102.  https://doi.org/10.1111/j.1365-2249.2011.04455.xCrossRefPubMedPubMedCentralGoogle Scholar
  41. Imberti L, Scarsi M, Zanotti C, Chiarini M, Bertoli D, Tincani A, Airo P (2015) Reduced T-cell repertoire restrictions in abatacept-treated rheumatoid arthritis patients. J Transl Med 13:12.  https://doi.org/10.1186/s12967-014-0363-2CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kane LP, Lin J, Weiss A (2002) It’s all Rel-ative: NF-kappaB and CD28 costimulation of T-cell activation. Trends Immunol 23(8):413–420CrossRefPubMedGoogle Scholar
  43. Kern F, Ode-Hakim S, Vogt K, Hoflich C, Reinke P, Volk HD (1996) The enigma of CD57+CD28- T cell expansion – anergy or activation? Clin Exp Immunol 104(1):180–184CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kern F, Faulhaber N, Frommel C, Khatamzas E, Prosch S, Schonemann C, Kretzschmar I, Volkmer-Engert R, Volk HD, Reinke P (2000) Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur J Immunol 30(6):1676–1682CrossRefPubMedGoogle Scholar
  45. Lachmann R, Bajwa M, Vita S, Smith H, Cheek E, Akbar A, Kern F (2012) Polyfunctional T cells accumulate in large human cytomegalovirus-specific T cell responses. J Virol 86(2):1001–1009.  https://doi.org/10.1128/jvi.00873-11CrossRefPubMedPubMedCentralGoogle Scholar
  46. Le Priol Y, Puthier D, Lecureuil C, Combadiere C, Debre P, Nguyen C, Combadiere B (2006) High cytotoxic and specific migratory potencies of senescent CD8+ CD57+ cells in HIV-infected and uninfected individuals. J Immunol 177(8):5145–5154CrossRefPubMedGoogle Scholar
  47. Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL, Schwartzberg PL, Cook MC, Walters GD, Vinuesa CG (2009) Follicular helper T cells are required for systemic autoimmunity. J Exp Med 206(3):561–576.  https://doi.org/10.1084/jem.20081886CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liuzzo G, Kopecky SL, Frye RL, O’Fallon WM, Maseri A, Goronzy JJ, Weyand CM (1999) Perturbation of the T-cell repertoire in patients with unstable angina. Circulation 100(21):2135–2139CrossRefPubMedGoogle Scholar
  49. Liuzzo G, Goronzy JJ, Yang H, Kopecky SL, Holmes DR, Frye RL, Weyand CM (2000) Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 101(25):2883–2888.  https://doi.org/10.1161/01.CIR.101.25.2883CrossRefPubMedGoogle Scholar
  50. Liuzzo G, Biasucci LM, Trotta G, Brugaletta S, Pinnelli M, Digianuario G, Rizzello V, Rebuzzi AG, Rumi C, Maseri A, Crea F (2007) Unusual CD4+CD28null T lymphocytes and recurrence of acute coronary events. J Am Coll Cardiol 50(15):1450–1458.  https://doi.org/10.1016/j.jacc.2007.06.040CrossRefPubMedGoogle Scholar
  51. Lyddane C, Gajewska BU, Santos E, King PD, Furtado GC, Sadelain M (2006) Cutting edge: CD28 controls dominant regulatory T cell activity during active immunization. J Immunol 176(6):3306–3310CrossRefPubMedGoogle Scholar
  52. Manavalan JS, Kim-Schulze S, Scotto L, Naiyer AJ, Vlad G, Colombo PC, Marboe C, Mancini D, Cortesini R, Suciu-Foca N (2004) Alloantigen specific CD8+CD28- FOXP3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int Immunol 16(8):1055–1068.  https://doi.org/10.1093/intimm/dxh107CrossRefPubMedGoogle Scholar
  53. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK (2013) The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev 26(1):86–102.  https://doi.org/10.1128/CMR.00062-12CrossRefPubMedPubMedCentralGoogle Scholar
  54. Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, Novo M, Ferrari M, Cosentino M, Marino F, Pozzi E, Fietta AM (2006) Foxp3 expressing CD4+ CD25+ and CD8+CD28- T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67(1–2):1–12.  https://doi.org/10.1016/j.humimm.2005.11.005CrossRefPubMedGoogle Scholar
  55. Mikulkova Z, Praksova P, Stourac P, Bednarik J, Strajtova L, Pacasova R, Belobradkova J, Dite P, Michalek J (2010) Numerical defects in CD8+CD28- T-suppressor lymphocyte population in patients with type 1 diabetes mellitus and multiple sclerosis. Cell Immunol 262(2):75–79.  https://doi.org/10.1016/j.cellimm.2010.02.002CrossRefPubMedGoogle Scholar
  56. Morgan MD, Pachnio A, Begum J, Roberts D, Rasmussen N, Neil DA, Bajema I, Savage CO, Moss PA, Harper L (2011) CD4+CD28- T cell expansion in granulomatosis with polyangiitis (Wegener’s) is driven by latent cytomegalovirus infection and is associated with an increased risk of infection and mortality. Arthritis Rheum 63(7):2127–2137.  https://doi.org/10.1002/art.30366CrossRefPubMedGoogle Scholar
  57. Moro F, Morciano A, Tropea A, Sagnella F, Palla C, Scarinci E, Ciardulli A, Martinez D, Familiari A, Liuzzo G, Tritarelli A, Cosentino N, Niccoli G, Crea F, Lanzone A, Apa R (2013) Effects of drospirenone-ethinylestradiol and/or metformin on CD4(+)CD28(null) T lymphocytes frequency in women with hyperinsulinemia having polycystic ovary syndrome: a randomized clinical trial. Reprod Sci 20(12):1508–1517.  https://doi.org/10.1177/1933719113488444CrossRefPubMedGoogle Scholar
  58. Mou D, Espinosa J, Lo DJ, Kirk AD (2014) CD28 negative T cells: is their loss our gain? Am J Transplant 14(11):2460–2466.  https://doi.org/10.1111/ajt.12937CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM (2002) T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 105(5):570–575CrossRefPubMedGoogle Scholar
  60. Namekawa T, Wagner UG, Goronzy JJ, Weyand CM (1998) Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum 41(12):2108–2116.  https://doi.org/10.1002/1529-0131(199812)41:12<2108::aid-art5>3.0.co;2-qCrossRefPubMedGoogle Scholar
  61. Namekawa T, Snyder MR, Yen JH, Goehring BE, Leibson PJ, Weyand CM, Goronzy JJ (2000) Killer cell activating receptors function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. J Immunol 165(2):1138–1145.  https://doi.org/10.4049/jimmunol.165.2.1138CrossRefPubMedGoogle Scholar
  62. Ng TP, Camous X, Nyunt MSZ, Vasudev A, Tan CTY, Feng L, Fulop T, Yap KB, Larbi A (2015) Markers of T-cell senescence and physical frailty: insights from Singapore longitudinal ageing studies. NPJ Aging Mech Dis 1:15005.  https://doi.org/10.1038/npjamd.2015.5CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ohkawa T, Seki S, Dobashi H, Koike Y, Habu Y, Ami K, Hiraide H, Sekine I (2001) Systematic characterization of human CD8+ T cells with natural killer cell markers in comparison with natural killer cells and normal CD8+ T cells. Immunology 103(3):281–290CrossRefPubMedPubMedCentralGoogle Scholar
  64. Okada R, Kondo T, Matsuki F, Takata H, Takiguchi M (2008) Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int Immunol 20(9):1189–1199.  https://doi.org/10.1093/intimm/dxn075CrossRefPubMedGoogle Scholar
  65. Pachnio A, Begum J, Fox A, Moss P (2015) Acyclovir therapy reduces the CD4+ T cell response against the immunodominant pp65 protein from cytomegalovirus in immune competent individuals. PLoS One 10(4):e0125287.  https://doi.org/10.1371/journal.pone.0125287CrossRefPubMedPubMedCentralGoogle Scholar
  66. Pachnio A, Ciaurriz M, Begum J, Lal N, Zuo J, Beggs A, Moss P (2016) Cytomegalovirus infection leads to development of high frequencies of cytotoxic virus-specific CD4+ T cells targeted to vascular endothelium. PLoS Pathog 12(9):e1005832.  https://doi.org/10.1371/journal.ppat.1005832CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pandya JM, Venalis P, Al-Khalili L, Shahadat Hossain M, Stache V, Lundberg IE, Malmstrom V, Fasth AE (2016) CD4+ and CD8+ CD28(null) T cells are cytotoxic to autologous muscle cells in patients with polymyositis. Arthritis Rheumatol 68(8):2016–2026.  https://doi.org/10.1002/art.39650CrossRefPubMedGoogle Scholar
  68. Pawelec G, McElhaney JE, Aiello AE, Derhovanessian E (2012) The impact of CMV infection on survival in older humans. Curr Opin Immunol 24(4):507–511.  https://doi.org/10.1016/j.coi.2012.04.002CrossRefPubMedGoogle Scholar
  69. Pera A, Campos C, Corona A, Sanchez-Correa B, Tarazona R, Larbi A, Solana R (2014) CMV latent infection improves CD8+ T response to SEB due to expansion of polyfunctional CD57+ cells in young individuals. PLoS One 9(2):e88538.  https://doi.org/10.1371/journal.pone.0088538CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pera A, Broadley I, Davies KA, Kern F (2017a) Cytomegalovirus as a driver of excess cardiovascular mortality in rheumatoid arthritis: a red herring or a smoking gun? Circ Res 120(2):274–277.  https://doi.org/10.1161/CIRCRESAHA.116.309982CrossRefPubMedGoogle Scholar
  71. Pera A, Vasudev A, Tan C, Kared H, Solana R, Larbi A (2017b) CMV induces expansion of highly polyfunctional CD4+ T cell subset coexpressing CD57 and CD154. J Leukoc Biol 101(2):555–566.  https://doi.org/10.1189/jlb.4A0316-112RCrossRefPubMedGoogle Scholar
  72. Pieper J, Johansson S, Snir O, Linton L, Rieck M, Buckner JH, Winqvist O, van Vollenhoven R, Malmstrom V (2014) Peripheral and site-specific CD4(+) CD28(null) T cells from rheumatoid arthritis patients show distinct characteristics. Scand J Immunol 79(2):149–155.  https://doi.org/10.1111/sji.12139CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pierer M, Rossol M, Kaltenhauser S, Arnold S, Hantzschel H, Baerwald C, Wagner U (2011) Clonal expansions in selected TCR BV families of rheumatoid arthritis patients are reduced by treatment with the TNFalpha inhibitors etanercept and infliximab. Rheumatol Int 31(8):1023–1029.  https://doi.org/10.1007/s00296-010-1402-9CrossRefPubMedGoogle Scholar
  74. Pierer M, Rothe K, Quandt D, Schulz A, Rossol M, Scholz R, Baerwald C, Wagner U (2012) Association of anticytomegalovirus seropositivity with more severe joint destruction and more frequent joint surgery in rheumatoid arthritis. Arthritis and rheumatism 64(6):1740–1749.  https://doi.org/10.1002/art.34346
  75. Rizzello V, Liuzzo G, Brugaletta S, Rebuzzi A, Biasucci LM, Crea F (2006) Modulation of CD4(+)CD28null T lymphocytes by tumor necrosis factor-alpha blockade in patients with unstable angina. Circulation 113(19):2272–2277.  https://doi.org/10.1161/circulationaha.105.588533CrossRefPubMedGoogle Scholar
  76. Rochette PJ, Brash DE (2008) Progressive apoptosis resistance prior to senescence and control by the anti-apoptotic protein BCL-xL. Mech Ageing Dev 129(4):207–214.  https://doi.org/10.1016/j.mad.2007.12.007CrossRefPubMedPubMedCentralGoogle Scholar
  77. Roetynck S, Olotu A, Simam J, Marsh K, Stockinger B, Urban B, Langhorne J (2013) Phenotypic and functional profiling of CD4 T cell compartment in distinct populations of healthy adults with different antigenic exposure. PLoS One 8(1):e55195.  https://doi.org/10.1371/journal.pone.0055195CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sadat-Sowti B, Debre P, Idziorek T, Guillon JM, Hadida F, Okzenhendler E, Katlama C, Mayaud C, Autran B (1991) A lectin-binding soluble factor released by CD8+CD57+ lymphocytes from AIDS patients inhibits T cell cytotoxicity. Eur J Immunol 21(3):737–741.  https://doi.org/10.1002/eji.1830210329CrossRefPubMedGoogle Scholar
  79. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12(4):431–440CrossRefPubMedGoogle Scholar
  80. Savva GM, Pachnio A, Kaul B, Morgan K, Huppert FA, Brayne C, Moss PA, Medical Research Council Cognitive Function and Ageing Study (2013) Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell 12(3):381–387.  https://doi.org/10.1111/acel.12059CrossRefPubMedGoogle Scholar
  81. Scarsi M, Ziglioli T, Airo P (2011) Baseline numbers of circulating CD28-negative T cells may predict clinical response to abatacept in patients with rheumatoid arthritis. J Rheumatol 38(10):2105–2111.  https://doi.org/10.3899/jrheum.110386CrossRefPubMedGoogle Scholar
  82. Sedmak DD, Guglielmo AM, Knight DA, Birmingham DJ, Huang EH, Waldman WJ (1994) Cytomegalovirus inhibits major histocompatibility class II expression on infected endothelial cells. Am J Pathol 144(4):683–692PubMedPubMedCentralGoogle Scholar
  83. Seyda M, Elkhal A, Quante M, Falk CS, Tullius SG (2016) T cells going innate. Trends Immunol 37(8):546–556.  https://doi.org/10.1016/j.it.2016.06.004CrossRefPubMedPubMedCentralGoogle Scholar
  84. Simpson RJ (2011) Aging, persistent viral infections, and immunosenescence: can exercise “make space”? Exerc Sport Sci Rev 39(1):23–33.  https://doi.org/10.1097/JES.0b013e318201f39dCrossRefPubMedGoogle Scholar
  85. Spaulding C, Guo W, Effros RB (1999) Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp Gerontol 34(5):633–644CrossRefPubMedGoogle Scholar
  86. Strindhall J, Skog M, Ernerudh J, Bengner M, Lofgren S, Matussek A, Nilsson BO, Wikby A (2013) The inverted CD4/CD8 ratio and associated parameters in 66-year-old individuals: the Swedish HEXA immune study. Age (Dordr) 35(3):985–991.  https://doi.org/10.1007/s11357-012-9400-3CrossRefGoogle Scholar
  87. Strioga M, Pasukoniene V, Characiejus D (2011) CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology 134(1):17–32.  https://doi.org/10.1111/j.1365-2567.2011.03470.xCrossRefPubMedPubMedCentralGoogle Scholar
  88. Suciu-Foca N, Manavalan JS, Scotto L, Kim-Schulze S, Galluzzo S, Naiyer AJ, Fan J, Vlad G, Cortesini R (2005) Molecular characterization of allospecific T suppressor and tolerogenic dendritic cells: review. Int Immunopharmacol 5(1):7–11.  https://doi.org/10.1016/j.intimp.2004.09.003CrossRefPubMedGoogle Scholar
  89. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685.  https://doi.org/10.1084/jem.20050882CrossRefPubMedPubMedCentralGoogle Scholar
  90. Sylwester A, Nambiar KZ, Caserta S, Klenerman P, Picker LJ, Kern F (2016) A new perspective of the structural complexity of HCMV-specific T-cell responses. Mech Ageing Dev 158:14–22.  https://doi.org/10.1016/j.mad.2016.03.002CrossRefPubMedGoogle Scholar
  91. Tae Yu H, Youn JC, Lee J, Park S, Chi HS, Choi C, Choi D, Ha JW, Shin EC (2014) Characterization of CD8CD57 T cells in patients with acute myocardial infarction. Cell Mol Immunol 12:466.  https://doi.org/10.1038/cmi.2014.74CrossRefPubMedPubMedCentralGoogle Scholar
  92. Teo FH, de Oliveira RT, Mamoni RL, Ferreira MC, Nadruz W Jr, Coelho OR, Fernandes Jde L, Blotta MH (2013) Characterization of CD4+CD28null T cells in patients with coronary artery disease and individuals with risk factors for atherosclerosis. Cell Immunol 281(1):11–19.  https://doi.org/10.1016/j.cellimm.2013.01.007CrossRefPubMedGoogle Scholar
  93. Trzonkowski P, Zilvetti M, Chapman S, Wieckiewicz J, Sutherland A, Friend P, Wood KJ (2008) Homeostatic repopulation by CD28-CD8+ T cells in alemtuzumab-depleted kidney transplant recipients treated with reduced immunosuppression. Am J Transplant 8(2):338–347.  https://doi.org/10.1111/j.1600-6143.2007.02078.xCrossRefPubMedGoogle Scholar
  94. Tsukishiro T, Donnenberg AD, Whiteside TL (2003) Rapid turnover of the CD8(+)CD28(−) T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol Immunother 52(10):599–607.  https://doi.org/10.1007/s00262-003-0395-6CrossRefPubMedGoogle Scholar
  95. Tulunay A, Yavuz S, Direskeneli H, Eksioglu-Demiralp E (2008) CD8+CD28-, suppressive T cells in systemic lupus erythematosus. Lupus 17(7):630–637.  https://doi.org/10.1177/0961203308089400CrossRefPubMedGoogle Scholar
  96. Urbaniak-Kujda D, Kapelko-Slowik K, Wolowiec D, Dybko J, Halon A, Jazwiec B, Maj J, Jankowska-Konsur A, Kuliczkowski K (2009) Increased percentage of CD8+CD28- suppressor lymphocytes in peripheral blood and skin infiltrates correlates with advanced disease in patients with cutaneous T-cell lymphomas. Postepy Hig Med Dosw (Online) 63:355–359Google Scholar
  97. Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169.  https://doi.org/10.1111/j.0105-2896.2005.00256.xCrossRefPubMedGoogle Scholar
  98. Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ (1999) Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol 162(11):6572–6579PubMedGoogle Scholar
  99. van de Berg PJ, Yong SL, Remmerswaal EB, van Lier RA, ten Berge IJ (2012) Cytomegalovirus-induced effector T cells cause endothelial cell damage. Clin Vaccine Immunol 19(5):772–779.  https://doi.org/10.1128/CVI.00011-12CrossRefPubMedPubMedCentralGoogle Scholar
  100. van Leeuwen EM, Remmerswaal EB, Vossen MT, Rowshani AT, Wertheim-van Dillen PM, van Lier RA, ten Berge IJ (2004) Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J Immunol 173(3):1834–1841.  https://doi.org/10.4049/jimmunol.173.3.1834CrossRefPubMedGoogle Scholar
  101. Walker JD, Maier CL, Pober JS (2009) Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol 182(3):1548–1559.  https://doi.org/10.4049/jimmunol.182.3.1548CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wang H, Peng G, Bai J, He B, Huang K, Hu X, Liu D (2017) Cytomegalovirus infection and relative risk of cardiovascular disease (ischemic heart disease, stroke, and cardiovascular death): a meta-analysis of prospective studies up to 2016. J Am Heart Assoc 6(7).  https://doi.org/10.1161/JAHA.116.005025
  103. Weekes MP, Wills MR, Mynard K, Hicks R, Sissons JG, Carmichael AJ (1999) Large clonal expansions of human virus-specific memory cytotoxic T lymphocytes within the CD57+ CD28- CD8+ T-cell population. Immunology 98(3):443–449CrossRefPubMedPubMedCentralGoogle Scholar
  104. Weinberger B, Lazuardi L, Weiskirchner I, Keller M, Neuner C, Fischer KH, Neuman B, Wurzner R, Grubeck-Loebenstein B (2007) Healthy aging and latent infection with CMV lead to distinct changes in CD8+ and CD4+ T-cell subsets in the elderly. Hum Immunol 68(2):86–90.  https://doi.org/10.1016/j.humimm.2006.10.019CrossRefPubMedGoogle Scholar
  105. Weng NP, Akbar AN, Goronzy J (2009) CD28(−) T cells: their role in the age-associated decline of immune function. Trends Immunol 30(7):306–312.  https://doi.org/10.1016/j.it.2009.03.013CrossRefPubMedPubMedCentralGoogle Scholar
  106. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499.  https://doi.org/10.1038/nri3862CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wikby A, Maxson P, Olsson J, Johansson B, Ferguson FG (1998) Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev 102(2–3):187–198CrossRefPubMedGoogle Scholar
  108. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Löfgren S, Nilsson BO, Ernerudh J, Pawelec G, Johansson B (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60(5):556–565CrossRefPubMedGoogle Scholar
  109. Wood KL, Twigg HL 3rd, Doseff AI (2009) Dysregulation of CD8+ lymphocyte apoptosis, chronic disease, and immune regulation. Front Biosci 14:3771–3781CrossRefPubMedCentralGoogle Scholar
  110. Wu X, Xu R, Cao M, Ruan L, Wang X, Zhang C (2015) Effect of the Kv1.3 voltage-gated potassium channel blocker PAP-1 on the initiation and progress of atherosclerosis in a rat model. Heart Vessels 30(1):108–114.  https://doi.org/10.1007/s00380-013-0462-7CrossRefPubMedGoogle Scholar
  111. Xu R, Cao M, Wu X, Wang X, Ruan L, Quan X, Lu C, He W, Zhang C (2012) Kv1.3 channels as a potential target for immunomodulation of CD4+ CD28null T cells in patients with acute coronary syndrome. Clin Immunol 142(2):209–217.  https://doi.org/10.1016/j.clim.2011.10.009CrossRefPubMedGoogle Scholar
  112. Yue FY, Kovacs CM, Dimayuga RC, Parks P, Ostrowski MA (2004) HIV-1-specific memory CD4+ T cells are phenotypically less mature than cytomegalovirus-specific memory CD4+ T cells. J Immunol 172(4):2476–2486CrossRefPubMedGoogle Scholar
  113. Zal B, Kaski JC, Arno G, Akiyu JP, Xu Q, Cole D, Whelan M, Russell N, Madrigal JA, Dodi IA, Baboonian C (2004) Heat-shock protein 60-reactive CD4+CD28null T cells in patients with acute coronary syndromes. Circulation 109(10):1230–1235.  https://doi.org/10.1161/01.CIR.0000118476.29352.2ACrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Cell Biology, Physiology and Immunology DepartmentMaimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of CordobaCordobaSpain
  2. 2.Division of MedicineBrighton and Sussex Medical SchoolBrightonUK

Personalised recommendations