MitomiRs in Human Inflamm-Aging

  • Angelica Giuliani
  • Luigina Micolucci
  • Fabiola Olivieri
  • Antonio Domenico Procopio
  • Maria Rita RippoEmail author
Living reference work entry


Mitochondria are intimately involved in aging. Diminished autophagic clearance affects the equilibrium between fusion and fission, inducing accumulation of dysfunctional mitochondria, oxidative stress, a chronic low-grade inflammation, and increased apoptosis, the hallmarks of aging. Several microRNAs (MiRs) are differentially expressed during cell aging and modulate inflammation. Research data suggest that selected MiRs share in “inflamm-aging,” an aging-related state characterized by chronic systemic inflammation that favors susceptibility to age-related diseases. MiRs can modulate mitochondrial activity, and a miR set has recently been identified in mitochondria of different species and cell types (mitomiRs). Some mitomiRs (let-7b, miR-19b, miR-20a, miR-24, miR-34a, miR-106a, miR-125b, miR-146a, miR-181a and miR-181c, miR-210, miR-221, miR-486-5p, miR-494, miR-542-5p) are closely involved in cell aging and inflamm-aging and target some resident mitochondrial proteins involved in apoptosis and energy metabolism. In particular, (i) Bcl-2 family members play large roles in mitochondrial integrity, and Bcl-2 exerts antioxidant and antiapoptotic effects and regulates mitochondrial fission/fusion and autophagy; and (ii) OxPhos proteins of nuclear and mitochondrial origin generate free radicals/ROS and drive ATP production, which is strongly reduced in aging cells. This intriguing construct is supported by the observation that in aging cells most of the above mitomiRs and their protein targets are significantly modulated and are involved in key processes, including growth, proliferation, death, and survival. Thus, aging-related mitomiRs may play a direct role in mitochondrial function by regulating protein expression, whose modulation could mediate the loss of mitochondrial integrity and function, inducing or contributing to the inflammatory response and to age-related diseases.


miRNA Mitochondria MitomiR Aging Inflamm-aging Bcl-2 family OxPhos 



The authors are grateful to Dr. S. Modena ( for text editing. This work was supported by grants from Università Politecnica delle Marche to M.R.R.


  1. Bader AG (2012) miR-34 – a microRNA replacement therapy is headed to the clinic. Front Genet 3:120PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM (2011) miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22(7):1252–1261PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bandiera S, Rüberg S, Girard M, Cagnard N, Hanein S, Chrétien D, Munnich A, Lyonnet S, Henrion-Caude A (2011) Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One 6:e20746PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bandiera S, Matégot R, Girard M, Demongeot J, Henrion-Caude A (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med 64:12–19PubMedCrossRefGoogle Scholar
  5. Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X (2011) PremicroRNA and mature microRNA in human mitochondria. PLoS One 6:e20220PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baseler W, Thapa D, Jagannathan R, Dabkowski E, Croston T, Hollander J (2012) miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. Am J Physiol Cell Physiol 303:C1244–C1251PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bates D, Li N, Liang R, Sarojini H, An J, Masternak M, Bartke A, Wang E (2010) MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell 9:1–18PubMedCrossRefGoogle Scholar
  8. Bayoumi AS, Sayed A, Broskova Z, Teoh JP, Wilson J, Su H, Tang YL, Kim IM (2016) Crosstalk between long noncoding RNAs and microRNAs in health and disease. Int J Mol Sci 17(3):356PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4(2):76–84PubMedCrossRefGoogle Scholar
  10. Bender C, Fitzgerald P, Tait S, Llamb F, McStay G, Tupper DO, Pellettieri J, Alvarado AS, Salvesen G, Green D (2012) Mitochondrial pathway of apoptosis is ancestral in metazoans. Proc Natl Acad Sci USA 109:4904–4909PubMedCrossRefGoogle Scholar
  11. Bhaumik D, Scott G, Schokrpur S, Patil C, Orjalo A, Rodier F, Lithgow G, Campisi J (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 1:402–411CrossRefGoogle Scholar
  12. Bian Z, Li LM, Tang R, Hou D, Chen X, Zhang C, Zen K (2010) Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res 20:1076–1078PubMedCrossRefGoogle Scholar
  13. Bianchessi V, Badi I, Bertolotti M, Nigro P, D’Alessandra Y, Capogrossi MC, Zanobini M, Pompilio G, Raucci A, Lauri A (2015) The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells. J Mol Cell Cardiol 81:62–70PubMedCrossRefGoogle Scholar
  14. Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310:1954–1957PubMedCrossRefGoogle Scholar
  15. Breving K, Esquela-Kerscher A (2010) The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 42:1316–1329PubMedCrossRefGoogle Scholar
  16. Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21:107–112PubMedCrossRefGoogle Scholar
  17. Cardoso S, Carvalho C, Correia SC, Seiça RM, Moreira PI (2016) Alzheimer’s disease: from mitochondrial perturbations to mitochondrial medicine. Brain Pathol.
  18. Carrer M, Liu N, Grueter C, Williams A, Frisard M, Hulver M, Bassel-Duby R, Olson E (2012) Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci USA 109(38):15330–15335PubMedCrossRefGoogle Scholar
  19. Cevenini E, Monti D, Franceschi C (2013) Inflamm-ageing. Curr Opin Clin Nutr Metab Care 16:14–20PubMedCrossRefGoogle Scholar
  20. Chan S, Zhang Y, Hemann C, Mahoney C, Zweier J, Loscalzo J (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron–sulfur cluster assembly proteins ISCU1/2. Cell Metab 10:273–284PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen X, Liu J, Feng WK, Wu X, Chen SY (2015) MiR-125b protects against ethanol-induced apoptosis in neural crest cells and mouse embryos by targeting Bak 1 and PUMA. Exp Neurol 271:104–111PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chendrimada T, Gregory R, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cheng NL, Chen X, Kim J, Shi AH, Nguyen C, Wersto R, Weng NP (2015) MicroRNA-125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age. Aging Cell 14(2):200–208PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chio CC, Lin JW, Cheng HA, Chiu WT, Wang YH, Wang JJ, Hsing CH, Chen RM (2013) MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 87(3):459–468PubMedCrossRefGoogle Scholar
  25. Collino F, Deregibus M, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5:e11803PubMedPubMedCentralCrossRefGoogle Scholar
  26. Coskun P, Wyrembak J, Schriner S, Chen H, Marciniack C, Laferla F, Wallace D (2012) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 1820:553–564PubMedCrossRefGoogle Scholar
  27. Cui Y, She K, Tian D, Zhang P, Xin X (2016) miR-146a inhibits proliferation and enhances chemosensitivity in epithelial ovarian cancer via reduction of SOD2. Oncol Res 23(6):275–282PubMedCrossRefGoogle Scholar
  28. Cypser JR, Johnson TE (2002) Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 57(3):B109–B114PubMedCrossRefGoogle Scholar
  29. Das S, Ferlito M, Kent O, Fox-Talbot K, Wang R, Liu D, Raghavachari N, Yang Y, Wheelan S, Murphy E, Steenbergen C (2012) Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res 110:1596–1603PubMedPubMedCentralCrossRefGoogle Scholar
  30. Das S, Bedja D, Campbell N, Dunkerly B, Chenna V, Maitra A, Steenbergen C (2014) miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One 9(5):e96820PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dasgupta N, Peng Y, Tan Z, Ciraolo G, Wang D, Li R (2015) miRNAs in mtDNA-less cell mitochondria. Cell Death Discov 1:15004PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dimmeler S, Nicotera P (2013) MicroRNAs in age-related diseases. EMBO Mol Med 5:180–190PubMedPubMedCentralCrossRefGoogle Scholar
  33. Drummond M, McCarthy J, Sinha M, Spratt H, Volpi E, Esser K, Rasmussen B (2011) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 43:595–603PubMedCrossRefGoogle Scholar
  34. Escames G, López L, García J, García-Corzo L, Ortiz F, Acuña-Castroviejo D (2012) Mitochondrial DNA and inflammatory diseases. Hum Genet 131:161–173PubMedCrossRefGoogle Scholar
  35. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo G, Zanesi N, Crawford M, Ozer G, Wernicke D, Alder H, Caligiuri M, Nana-Sinkam P, Perrotti D, Croce C (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 109:E2110–E2116PubMedCrossRefGoogle Scholar
  36. Faraonio R, Salerno P, Passaro F, Sedia C, Iaccio A, Bellelli R, Nappi TC, Comegna M, Romano S, Salvatore G, Santoro M, Cimino F (2012) A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ 19(4):713–721PubMedCrossRefGoogle Scholar
  37. Faustin B, Chen Y, Zhai D, Negrate G, Lartigue L, Satterthwait A, Reed J (2009) Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain dependent suppression of ATP binding and oligomerization. Proc Natl Acad Sci USA 106:3935–3940PubMedCrossRefGoogle Scholar
  38. Favaro E, Ramachandran A, McCormick R, Gee H, Blancher C, Crosby M, Devlin C, Blick C, Buffa F, Li J, Vojnovic B, Neves RP, Glazer P, Iborra F, Ivan M, Ragoussis J, Harris A (2010) MicroRNA-210 regulates mitochondrial free radical response to hypoxia and Krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One 5:e10345PubMedPubMedCentralCrossRefGoogle Scholar
  39. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9PubMedCrossRefGoogle Scholar
  40. Franceschi C, Bonafè M, Valensin S, Olivieri F, Luca MD, Ottaviani E, Benedictis GD (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  41. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia M, Invidia L, Celani L, Scurti M, Cevenini E, Castellani G, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105PubMedCrossRefGoogle Scholar
  42. Frenzel M, Rommelspacher H, Sugawa MD, Dencher NA (2010) Ageing alters the supramolecular architecture of OxPhos (oxidative phosphorylation) complexes in rat brain cortex. Exp Gerontol 45(7–8):563–572PubMedCrossRefGoogle Scholar
  43. Freund A, Patil C, Campisi J (2011) p38MAPK is a novel DNA damage response independent regulator of the senescence-associated secretory phenotype. EMBO J 30:1536–1548PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gao P, Tchernyshyov I, Chang T, Lee Y, Kita K, Ochi T, Zeller K, Marzo AD, Eyk JV, Mendell J, Dang C (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gelino S, Hansen M (2012) Autophagy – an emerging anti-aging mechanism. J Clin Exp Pathol. pii: Suppl 4: 006Google Scholar
  46. Gems D, Partridge L (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7(3):200–203PubMedCrossRefGoogle Scholar
  47. Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30(7):271–286PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gong J, Zhang JP, Li B, Zeng C, You K, Chen MX, Yuan Y, Zhuang SM (2013) MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 32(25):3071–3079PubMedCrossRefGoogle Scholar
  49. Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Mück C, Laschober G, Lepperdinger G, Sampson N, Berger P, Herndler-Brandstetter D, Wieser M, Kühnel H, Strasser A, Rinnerthaler M, Breitenbach M, Mildner M, Eckhart L, Tschachler E, Trost A, Bauer J, Papak C, Trajanoski Z, Scheideler M, Grillari-Voglauer R, Grubeck-Loebenstein B, Jansen-Dürr P, Grillari J (2010) miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 9:291–296PubMedPubMedCentralCrossRefGoogle Scholar
  50. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300PubMedCrossRefGoogle Scholar
  51. Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21(10):569–576PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hooten NN, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman A, Evans M (2010) microRNA expression patterns reveal differential expression of target genes with age. PLoS One 5:e10724CrossRefGoogle Scholar
  53. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110PubMedCrossRefGoogle Scholar
  54. Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, Wood WH 3rd, Lehrmann E, Camandola S, Becker KG, Gorospe M, Mattson MP (2013) Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 61:1018–1028PubMedPubMedCentralCrossRefGoogle Scholar
  55. Inomata M, Tagawa H, MGuo Y, Kameoka Y, Takahashi N, Sawada K (2009) MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113:396–402PubMedCrossRefGoogle Scholar
  56. Inukai S, Slack F (2013) MicroRNAs and the genetic network in aging. J Mol Biol 425:3601–3608PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kapahi P, Chen D, Rogers A, Katewa S, Li P, Thomas EL, Kockel L (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11:453–465PubMedPubMedCentralCrossRefGoogle Scholar
  58. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246:500–503PubMedCrossRefGoogle Scholar
  59. Kinnally K, Peixoto P, Ryu S, Dejean L (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813:616–622PubMedCrossRefGoogle Scholar
  60. Kirby K, Hu J, Hilliker AJ, Phillips JP (2002) RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci USA 99(25):16162–16167PubMedCrossRefGoogle Scholar
  61. Kren B, Wong P, Sarver A, Zhang X, Zeng Y, Steer C (2009) MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol 6:65–72PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163PubMedCrossRefGoogle Scholar
  63. Krysko D, Agostinis P, Krysko O, Garg A, Bachert C, Lambrecht B, Vandenabeele P (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 32:157–164PubMedCrossRefGoogle Scholar
  64. Lal A, Kim HH, Abdelmohsen K, Kuwano Y, Pullmann R Jr, Srikantan S, Subrahmanyam R, Martindale JL, Yang X, Ahmed F, Navarro F, Dykxhoorn D, Lieberman J, Gorospe M (2008) p16 (INK4a) translation suppressed by miR-24. PLoS One 3(3):e1864PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lambert A, Wang B, Merry B (2004) Exogenous insulin can reverse the effects of caloric restriction on mitochondria. Biochem Biophys Res Commun 316:1196–1201PubMedCrossRefGoogle Scholar
  66. Lang A, Grether-Beck S, Singh M, Kuck F, Jakob S, Kefalas A, Altinoluk-Hambüchen S, Graffmann N, Schneider M, Lindecke A, Brenden H, Felsner I, Ezzahoini H, Marini A, Weinhold S, Vierkötter A, Tigges J, Schmidt S, Stühler K, Köhrer K, Uhrberg M, Haendeler J, Krutmann J, Piekorz RP (2016) MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY) 8(3):484–509CrossRefGoogle Scholar
  67. Li G, Luna C, Qiu J, Epstein D, Gonzalez P (2010) Modulation of inflammatory markers by miR-146a during replicative senescence in trabecular meshwork cells. Invest Ophthalmol Vis Sci 51:2976–2985PubMedPubMedCentralCrossRefGoogle Scholar
  68. Li N, Bates D, An J, Terry D, Wang E (2011) Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging 32:944–955PubMedCrossRefGoogle Scholar
  69. Li P, Jiao J, Gao G, Prabhakar B (2012) Control of mitochondrial activity by miRNAs. J Cell Biochem 113:1104–1110PubMedPubMedCentralCrossRefGoogle Scholar
  70. Liu N, Landreh M, Cao K, Abe M, Hendriks G, Kennerdell J, Zhu Y, Wang L, Bonini N (2012) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482:519–523PubMedPubMedCentralCrossRefGoogle Scholar
  71. López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo M, Allard J, Ingram D, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 103:1768–1773PubMedCrossRefGoogle Scholar
  72. Machlin E, Sarnow P, Sagan S (2012) Combating hepatitis C virus by targeting microRNA-122 using locked nucleic acids. Curr Gene Ther 12:301–306PubMedCrossRefGoogle Scholar
  73. Mancini M, Saintigny G, Mahé C, Annicchiarico-Petruzzelli M, Melino G, Candi E (2012) MicroRNA-152 and -181a participate in human dermal fibroblasts senescence acting on cell adhesion and remodeling of the extra-cellular matrix. Aging (Albany NY) 4:843–853CrossRefGoogle Scholar
  74. Maximov V, Martynenko A, Hunsmann G, Tarantul V (2002) Mitochondrial 16S rRNA gene encodes a functional peptide, a potential drug for Alzheimer’s disease and target for cancer therapy. Med Hypotheses 59(6):670–673PubMedCrossRefGoogle Scholar
  75. Mercer T, Neph S, Dinger M, Crawford J, Smith M, Shearwood A, Haugen E, Bracken C, Rackham O, Stamatoyannopoulos J, Filipovska A, Mattick J (2011) The human mitochondrial transcriptome. Cell 146:645–658PubMedPubMedCentralCrossRefGoogle Scholar
  76. Miranda K, Huynh T, Tay Y, Ang Y, Tam W, Thomson A, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217PubMedCrossRefGoogle Scholar
  77. Nana-Sinkam S, Croce C (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93:98–104PubMedCrossRefGoogle Scholar
  78. Narasimhan S, Yen K, Tissenbaum H (2009) Converging pathways in lifespan regulation. Curr Biol 19:R657–R666PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nouws J, Shadel GS (2014) microManaging mitochondrial translation. Cell 158(3):477–478PubMedCrossRefGoogle Scholar
  80. Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR, Galeazzi R, Abbatecola A, Marcheselli F, Monti D, Ostan R, Cevenini E, Antonicelli R, Franceschi C, Procopio A (2012) Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 133:675–685PubMedCrossRefGoogle Scholar
  81. Olivieri F, Rippo MR, Procopio A, Fazioli F (2013a) Circulating inflamma-miRs in aging and age-related diseases. Front Genet 4:121PubMedPubMedCentralCrossRefGoogle Scholar
  82. Olivieri F, Lazzarini R, Recchioni R, Marcheselli F, Rippo MR, Di Nuzzo S, Albertini M, Graciotti L, Babini L, Mariotti S, Spada G, Abbatecola A, Antonicelli R, Franceschi C, Procopio A (2013b) MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age (Dordr) 35:1157–1172CrossRefGoogle Scholar
  83. Olivieri F, Rippo MR, Monsurrò V, Salvioli S, Capri MR, Procopio A, Franceschi C (2013c) MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev 12(4):1056–1068PubMedCrossRefGoogle Scholar
  84. Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, Bonafè M (2015) DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 6(34):35509–35521PubMedPubMedCentralGoogle Scholar
  85. Ouyang Y, Lu Y, Yue S, Giffard R (2012) miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 12:213–219PubMedCrossRefGoogle Scholar
  86. Palikaras K, Tavernarakis N (2012) Mitophagy in neurodegeneration and aging. Front Genet 3:297PubMedPubMedCentralCrossRefGoogle Scholar
  87. Panach L, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ (2015) Serum circulating microRNAs as biomarkers of osteoporotic fracture. Calcif Tissue Int 97(5):495–505PubMedCrossRefGoogle Scholar
  88. Park H, Huang X, Lu C, Cairo MS, Zhou X (2015) MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem 290(5):2831–2841PubMedCrossRefGoogle Scholar
  89. Prattichizzo F, Giuliani A, Ceka A, Rippo MR, Bonfigli AR, Testa R, Procopio AD, Olivieri F (2015) Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics 7:56PubMedPubMedCentralCrossRefGoogle Scholar
  90. Puisségur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, Maurin T, Lebrigand K, Cardinaud B, Hofman V, Fourre S, Magnone V, Ricci JE, Pouysségur J, Gounon P, Hofman P, Barbry P, Mari B (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18(3):465–478PubMedCrossRefGoogle Scholar
  91. Rackham O, Shearwood AM, Mercer TR, Davies SMK, Mattick JS, Filipovska A (2011) Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear encoded proteins. RNA 17(12):2085–2093PubMedPubMedCentralCrossRefGoogle Scholar
  92. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25(10):502–508PubMedCrossRefGoogle Scholar
  93. Rao Y, Shi H, Ji M, Chen C (2013) MiR-106a targets Mcl-1 to suppress cisplatin resistance of ovarian cancer A2780 cells. J Huazhong Univ Sci Technolog Med Sci 33(4):567PubMedCrossRefGoogle Scholar
  94. Ren J, Pulakat L, Whaley-Connell A, Sowers J (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med 88:993–1001PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rippo MR, Olivieri F, Monsurrò V, Prattichizzo F, Albertini MC, Procopio AD (2014) MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol 56:154–163PubMedCrossRefGoogle Scholar
  96. Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, Zheng H, Lin YM, Moro L, Hsieh JT, Yan W (2013) The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res 23(6):759–774PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rolland S, Conradt B (2010) New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol 22:852–858PubMedPubMedCentralCrossRefGoogle Scholar
  98. Salminen A, Ojala J, Kaarniranta K, Kauppinen A (2012a) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age related diseases. Cell Mol Life Sci 69:2999–3013PubMedCrossRefGoogle Scholar
  99. Salminen A, Kaarniranta K, Kauppinen A (2012b) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 4(3):166–175CrossRefGoogle Scholar
  100. Salminen A, Kaarniranta K, Kauppinen A (2013) Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 12:520–534PubMedCrossRefGoogle Scholar
  101. Scheckhuber C, Erjavec N, Tinazli A, Hamann A, Nyström T, Osiewacz H (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–105PubMedCrossRefGoogle Scholar
  102. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911PubMedCrossRefGoogle Scholar
  103. Scialò F, Sriram A, Fernández-Ayala D, Gubina N, Lõhmus M, Nelson G, Logan A, Cooper HM, Navas P, Enríquez JA, Murphy MP, Sanz A (2016) Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab 23(4):725–734PubMedPubMedCentralCrossRefGoogle Scholar
  104. Seeger T, Haffez F, Fischer A, Koehl U, Leistner DM, Seeger FH, Boon RA, Zeiher AM, Dimmeler S (2013) Immunosenescence-associated microRNAs in age and heart failure. Eur J Heart Fail 15(4):385–393PubMedCrossRefGoogle Scholar
  105. Shaik A, Schiavi A, Ventura N (2016) Mitochondrial autophagy promotes healthy aging. Cell Cycle 26:1–2Google Scholar
  106. Shamas-Din A, Kale J, Leber B, Andrews D (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol 5:a008714PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shimada K, Crother T, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan V, Wolf A, Vergnes L, Ojcius D, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald K, Underhill D, Town T, Arditi M (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–414PubMedPubMedCentralCrossRefGoogle Scholar
  108. Shinde S, Bhadra U (2015) A complex genome-microRNA interplay in human mitochondria. Biomed Res Int 2015:206382PubMedPubMedCentralCrossRefGoogle Scholar
  109. Singh K, Maity P, Krug L, Meyer P, Treiber N, Lucas T, Basu A, Kochanek S, Wlaschek M, Geiger H, Scharffetter-Kochanek K (2014) Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN. EMBO Mol Med 7(1):59–77PubMedCentralCrossRefPubMedGoogle Scholar
  110. Song DW, Ryu J, Kim J, Kwon E, Kim do H (2014) MicroRNA-19a/b family positively regulates cardiomyocyte hypertrophy by targeting atrogin-1 and MuRF-1. Biochem J 457(1):151–162PubMedCrossRefGoogle Scholar
  111. Sripada L, Tomar D, Singh R (2012a) Mitochondria: one of the destinations of miRNAs. Mitochondrion 12:593–599PubMedCrossRefGoogle Scholar
  112. Sripada L, Tomar D, Prajapati P, Singh R, Singh A, Singh R (2012b) Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One 7:e44873PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161(2):661–672PubMedPubMedCentralGoogle Scholar
  114. Sun LY, Wang N, Ban T, Sun YH, Han Y, Sun LL, Yan Y, Kang XH, Chen S, Sun LH, Zhang R, Zhao YJ, Zhang H, Ai J, Yang BF (2014) MicroRNA-23a mediates mitochondrial compromise in estrogen deficiency-induced concentric remodeling via targeting PGC-1α. J Mol Cell Cardiol 75:1–11PubMedCrossRefGoogle Scholar
  115. Tajima H, Niikura T, Hashimoto Y, Kita Y, Terashita K, Yamazaki K, Koto A, Aiso S, Nishimoto I (2002) Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults. Neurosci Lett 324(3):227–231PubMedCrossRefGoogle Scholar
  116. Tak H, Kim J, Jayabalan AK, Lee H, Kang H, Cho DH, Ohn T, Nam SW, Kim W, Lee EK (2014) miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor. Exp Mol Med 46:e123PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351PubMedCrossRefGoogle Scholar
  118. Tomasetti M, Neuzil J, Dong L (2013) MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim Biophys Acta 1840(4):1441–1453PubMedCrossRefGoogle Scholar
  119. Trifunovic A (2006) Mitochondrial DNA and ageing. Biochim Biophys Acta 1757(5–6):611–617PubMedCrossRefGoogle Scholar
  120. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423PubMedCrossRefGoogle Scholar
  121. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson NG (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 102(50):17993–17998PubMedCrossRefGoogle Scholar
  122. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797(2):113–128PubMedCrossRefGoogle Scholar
  123. Twig G, Elorza A, Molina A, Mohamed H, Wikstrom J, Walzer G, Stiles L, Haigh S, Katz S, Las G, Alroy J, Wu M, Py B, Yuan J, Deeney J, Corkey B, Shirihai O (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446PubMedPubMedCentralCrossRefGoogle Scholar
  124. Uraoka M, Ikeda K, Kurimoto-Nakano R, Nakagawa Y, Koide M, Akakabe Y, Kitamura Y, Ueyama T, Matoba S, Yamada H, Okigaki M, Matsubara H (2011) Loss of bcl-2 during the senescence exacerbates the impaired angiogenic functions in endothelial cells by deteriorating the mitochondrial redox state. Hypertension 58:254–263PubMedCrossRefGoogle Scholar
  125. Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci USA 109(15):5785–5790PubMedCrossRefGoogle Scholar
  126. Wahlgren J, Karlson TDL, Brisslert M, Sani FV, Telemo E, Sunnerhagen P, Valadi H (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wang Y, Hekimi S (2015) Mitochondrial dysfunction and longevity in animals: untangling the knot. Science 350(6265):1204–1207PubMedCrossRefGoogle Scholar
  128. Wang F, Xiong L, Huang X, Zhao T, Wu LY, Liu ZH, Ding X, Liu S, Wu Y, Zhao Y, Wu K, Zhu LL, Fan M (2013) miR-210 suppresses BNIP3 to protect against the apoptosis of neural progenitor cells. Stem Cell Res 11(1):657–667PubMedCrossRefGoogle Scholar
  129. Wang S, Tang C, Zhang Q, Chen W (2014) Reduced miR-9 and miR-181a expression down-regulates Bim concentration and promote osteoclasts survival. Int J Clin Exp Pathol 7(5):2209–2218PubMedPubMedCentralGoogle Scholar
  130. Wang H, Li J, Chi H, Zhang F, Zhu X, Cai J, Yang X (2015) MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J Cell Mol Med 19(9):2084–2097PubMedPubMedCentralCrossRefGoogle Scholar
  131. Weil D, Hollien J (2013) Cytoplasmic organelles on the road to mRNA decay. Biochim Biophys Acta 1829:725–731PubMedCrossRefGoogle Scholar
  132. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23(2):303–314PubMedCrossRefGoogle Scholar
  133. Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH et al (2014a) Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129(9):1009–1021PubMedPubMedCentralCrossRefGoogle Scholar
  134. Yang F, Li Q, Gong Z, Zhou L, You N, Wang S, Li X, Li J, An J, Wang D, He Y, Dou K (2014b) MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol Cancer Res Treat 13(1):77–86PubMedCrossRefGoogle Scholar
  135. Ye Z, Hao R, Cai Y, Wang X, Huang G (2016) Knockdown of miR-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer. Tumour Biol 37(4):4509–4515PubMedCrossRefGoogle Scholar
  136. Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y, Zhang H, Guo P, Sun H, Guo L, Zhang Y, Fu XD (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158(3):607–619PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zhang F, Wang J, Chu J, Yang C, Xiao H, Zhao C, Sun Z, Gao X, Chen G, Han Z, Zou W, Liu T (2015a) MicroRNA-146a induced by hypoxia promotes chondrocyte autophagy through Bcl-2. Cell Physiol Biochem 37(4):1442–1453PubMedCrossRefGoogle Scholar
  138. Zhang L, Li YJ, Wu XY, Hong Z, Wei WS (2015b) MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. J Neurochem 132(6):713–723PubMedCrossRefGoogle Scholar
  139. Zhao A, Zeng Q, Xie X, Zhou J, Yue W, Li Y, Pei X (2012) MicroRNA-125b induces cancer cell apoptosis through suppression of Bcl-2 expression. J Genet Genomics 39(1):29–35PubMedCrossRefGoogle Scholar
  140. Zhong X, Chung A, Chen H, Dong Y, Meng X, Li R, Yang W, Hou F, Lan H (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56(3):663–674PubMedCrossRefGoogle Scholar
  141. Zhou R, Yazdi A, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225PubMedCrossRefGoogle Scholar
  142. Zhu D, Pan C, Li L, Bian Z, Lv Z, Shi L, Zhang J, Li D, Gu H, Zhang C, Liu Y, Zen K (2013) MicroRNA-17/20a/106a modulate macrophage inflammatory responses through targeting signal-regulatory protein α. J Allergy Clin Immunol 132(2):426–436.e8PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zimmermann A, Loucks F, Schroeder E, Bouchard R, Tyler K, Linseman D (2007) Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for BCL-2 antioxidant function at mitochondria. J Biol Chem 282:29296–29304PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Angelica Giuliani
    • 1
  • Luigina Micolucci
    • 1
  • Fabiola Olivieri
    • 1
    • 2
  • Antonio Domenico Procopio
    • 1
    • 2
  • Maria Rita Rippo
    • 1
    Email author
  1. 1.Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences (DISCLIMO)Università Politecnica delle MarcheAnconaItaly
  2. 2.Center of Clinical Pathology and Innovative TherapyItalian National Research Center on Aging (INRCA-IRCCS)AnconaItaly

Personalised recommendations