Role of Cortisol and Dehydroepiandrosterone on RACK1/PKC Signalling and Consequences in Immunosenescence

  • E. Buoso
  • Mm. Serafini
  • M. Galasso
  • M. Ronfani
  • L. Poloni
  • C. Lanni
  • E. Corsini
  • M. RacchiEmail author
Living reference work entry


Over the past 15 years, it was demonstrated that defective protein kinase C (PKC) signal transduction machinery correlates to the decline of immune functions associated with aging. Experimental evidence suggest that altered PKC signalling results in impaired response to lipopolisaccaride (LPS) stimulation and cytokine release. Such defective signalling is due to reduced expression of receptor for activated C kinase 1 (RACK1) and to age-related alteration of the hormonal balance between cortisol and dehydroepiandrosterone (DHEA): cortisol levels remain substantially unchanged while DHEA levels decline with aging. These aspects are particularly relevant for the functional PKC signalling system because DHEA administration in vivo and in vitro in aged animals and in human cells can reestablish the levels of RACK1 and thus the function of the PKC signalling cascade. There is also evidence that cortisol and DHEA have opposite effect on the transcriptional regulation of the gene encoding for RACK1 and known as GNB2L1. At transcriptional level, cortisol has a peculiar function of a negative regulator of the RACK1 promoter, while the effect of DHEA seems to derive from a complex influence on the functions and post-transcriptional regulation of the glucocorticoid receptor (GR). Here we discuss the role of PKC/RACK1 signalling in the context of immune cells and immunosenescence also focusing on the role of cortisol and DHEA in the regulation of RACK1 expression.


RACK1 GNB2L1 Protein kinase C (PKC) Signal transduction Transcriptional regulation Cortisol Dehydroepiandrosterone (DHEA) 


  1. Adams DR, Ron D, Kiely PA (2011) RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun Signal 9:22PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altman A, Kong KF (2014) Protein kinase C inhibitors for immune disorders. Drug Discov Today 19(8):1217–1221PubMedPubMedCentralCrossRefGoogle Scholar
  3. Battaini F, Pascale A, Paoletti R, Govoni S (1997) The role of anchoring protein RACK- 1 in PKC activation in the aging rat brain. Trends Neurosci 20(9):410–415PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baulieu EE, Thomas G, Legrain S, Lahlou N, Roger M, Debuire B, Faucounau V, Girard L, Hervy MP, Latour F, Leaud MC, Mokrane A, Pitti-Ferrandi H, Trivalle C, de Lacharrière O, Nouveau S, Rakoto-Arison B, Souberbielle JC, Raison J, Le Bouc Y, Raynaud A, Girerd X, Forette F (2000) Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge study to a sociobiomedical issue. Proc Natl Acad Sci USA 97(8):4279–4284PubMedCrossRefPubMedCentralGoogle Scholar
  5. Blauer KL, Poth M, Rogers WM, Bernton EW (1991) Dehydroepiandrosterone antagonizes the suppressive effects of dexamethasone on lymphocyte proliferation. Endocrinology 129(6):3174–3179PubMedCrossRefPubMedCentralGoogle Scholar
  6. Boraschi D, Del Giudice G, Dutel C, Ivanoff B, Rappuoli R, Grubeck-Loebenstein B (2010) Aging and immunity: addressing immune senescence to ensure healthy aging. Vaccine 7:3627–3631CrossRefGoogle Scholar
  7. Bruscoli S, Migliorati G, Riccardi C (2002) Molecular mechanisms of immunomodulatory activity of glucocorticoids. Pharmacol Res 45(5):361–368PubMedCrossRefPubMedCentralGoogle Scholar
  8. Buford TW, Willoughby DS (2008) Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl Physiol Nutr Metab 33(3):429–433PubMedCrossRefPubMedCentralGoogle Scholar
  9. Buoso E, Lanni C, Molteni E, Rousset F, Corsini E, Racchi M (2011) Opposing effects of cortisol and dehydroepiandrosterone on the expression of the receptor for activated C kinase 1: implications in immunosenescence. Exp Gerontol 46(11):877–883PubMedCrossRefPubMedCentralGoogle Scholar
  10. Buoso E, Biundo F, Lanni C, Aiello S, Grossi S, Schettini G, Govoni S, Racchi M (2013) Modulation of RACK1/PKCβII signalling by soluble AβPPα in SH-SY5Y cells. Curr Alzheimer Res 10(7):697–705PubMedCrossRefGoogle Scholar
  11. Butcher SK, Killampalli V, Lascelles D, Wang K, Alpar EK, Lord JM (2005) Raised cortisol:DHEAS ratios in the elderly after injury: potential impact upon neutrophil function and immunity. Aging Cell 4:319–324PubMedCrossRefGoogle Scholar
  12. Castrillo A, Pennington DJ, Otto F, Parker PJ, Owen MJ, Boscá L (2001) Protein kinase Cepsilon is required for macrophage activation and defense against bacterial infection. Exp Med 194(9):1231–1242CrossRefGoogle Scholar
  13. Ceresini G, Morganti S, Rebecchi I, Freddi M, Ceda GP, Banchini A, Solerte SB, Ferrari E, Ablondi F, Valenti G (2000) Evaluation of the circadian profiles of serum dehydroepiandrosterone (DHEA), cortisol, and cortisol/DHEA molar ratio after a single oral administration of DHEA in elderly subjects. Metabolism 49(4):548–551PubMedCrossRefGoogle Scholar
  14. Charmandari E, Chrousos GP, Ichijo T, Bhattacharyya N, Vottero A, Souvatzoglou E, Kino T (2005) The human glucocorticoid receptor (hGR) beta isoform suppresses the transcriptional activity of hGRalpha by interfering with formation of active coactivator complexes. Mol Endocrinol 19:52–64PubMedCrossRefGoogle Scholar
  15. Choi DS, Young H, McMahon T, Wang D, Messing RO (2003) The mouse RACK1 gene is regulated by nuclear factor-kappa B and contributes to cell survival. Mol Pharmacol 64(6):1541–1548PubMedCrossRefGoogle Scholar
  16. Chou YC, Chou CC, Chen YK, Tsai S, Hsieh FM, Liu HJ, Hseu TH (1999) Structure and genomic organization of porcine RACK1 gene. Biochim Biophys Acta 1489:315–322PubMedCrossRefGoogle Scholar
  17. Corsini E, Battaini F, Lucchi L, Marinovich M, Racchi M, Govoni S, Galli CL (1999) A defective protein kinase C anchoring system underlying age-associated impairment in TNF-alpha production in rat macrophages. J Immunol 163:3468–3473PubMedGoogle Scholar
  18. Corsini E, Viviani B, Lucchi L, Marinovich M, Racchi M, Galli CL (2001) Ontogenesis of protein kinase C betaII and its anchoring protein RACK1 in the maturation of alveolar macrophage functional responses. Immunol Lett 76(2):89–93PubMedCrossRefGoogle Scholar
  19. Corsini E, Lucchi L, Meroni M, Racchi M, Solerte B, Fioravanti M, Viviani B, Marinovich M, Govoni S, Galli CL (2002) In vivo dehydroepiandrosterone restores age-associated defects in the protein kinase C signal transduction pathway and related functional responses. J Immunol 168:1753–1748PubMedCrossRefGoogle Scholar
  20. Corsini E, Racchi M, Sinforiani E, Lucchi L, Viviani B, Rovati GE, Govoni S, Galli CL (2005) Age-related decline in RACK1 expression in human leukocytes is correlated to plasma levels of dehydroepiandrosterone. J Leukoc Biol 77:247–256PubMedCrossRefGoogle Scholar
  21. Corsini E, Vismara L, Lucchi L, Viviani B, Govoni S, Galli CL, Marinovich M, Racchi M (2006) High interleukin-10 production is associated with low antibody response to influenza vaccination in the elderly. J Leukoc Biol 80:376–382PubMedCrossRefGoogle Scholar
  22. Corsini E, Racchi M, Lucchi L, Donetti E, Bedoni M, Viviani B, Galli CL, Marinovich M (2009) Skin immunosenescence: decreased receptor for activated C kinase-1 expression correlates with defective tumour necrosis factor-alpha production in epidermal cells. Br J Dermatol 160(1):16–25PubMedCrossRefGoogle Scholar
  23. Corsini E, Pinto A, Galbiati V, Viviani B, Galli CL, Marinovich M, Racchi M (2014a) Corticosteroids modulate the expression of the PKC-anchoring protein RACK1 and cytokine release in THP-1 cells. Pharmacol Res 81:10–16PubMedCrossRefGoogle Scholar
  24. Corsini E, Galbiati V, Esser PR, Pinto A, Racchi M, Marinovich M, Martin SF, Galli CL (2014b) Role of PKC-β in chemical allergen-induced CD86 expression and IL-8 release in THP-1 cells. Arch Toxicol 88(2):415–424PubMedCrossRefGoogle Scholar
  25. Corsini E, Galbiati V, Pinto A, Davin A, Polito L, Guaita A, Racchi M (2015) Immunostimulatory effects of RACK1 pseudosubstrate in human leukocytes obtained from young and old donors. Oncotarget 6(9):6524–6534PubMedPubMedCentralCrossRefGoogle Scholar
  26. Corsini E, Galbiati V, Papale A, Kummer E, Pinto A, Serafini MM, Guaita A, Spezzano R, Caruso D, Marinovich M, Racchi M (2016) Role of androgens in dhea-induced rack1 expression and cytokine modulation in monocytes. Immun Ageing 13:20PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cravello L, Muzzoni B, Casarotti D, Paltro M, Solerte SB, Fioravanti M, Cuzzoni G, Pontiggia B, Magri F, Ferrari E (2001) Age-related changes of the hypothalamic-pituitary-adrenal axis: pathophysiological correlates. Eur J Endocrinol 144(4):319–329PubMedCrossRefGoogle Scholar
  28. Daynes RA, Araneo BA, Hennebold J, Enioutina E, Mu HH (1995) Steroids as regulators of the mammalian immune response. J Invest Dermatol 105:14S–19SPubMedCrossRefGoogle Scholar
  29. Dekker LV, Parker PJ (1994) Protein kinase C--a question of specificity. Trends Biochem Sci 19(2):73–77PubMedCrossRefGoogle Scholar
  30. Del Vecchio I, Zuccotti A, Canneva F, Lenzken SC, Racchi M (2007) Development of the first gateway firefly luciferase vector and use of reverse transcriptase in FLOE (fluorescently labeled oligonucleotide extension) reactions. Plasmid 58(3):269–274PubMedCrossRefGoogle Scholar
  31. Del Vecchio I, Zuccotti A, Pisano F, Canneva F, Lenzken SC, Rousset F, Corsini E, Govoni S, Racchi M (2009) Functional mapping of the promoter region of the GNB2L1 human gene coding for RACK1 scaffold protein. Gene 430(1–2):17–29PubMedCrossRefPubMedCentralGoogle Scholar
  32. Delpedro AD, Barjavel MJ, Mamdouh Z, Faure S, Bakouche O (1998) Signal transduction in LPS-activated aged and young monocytes. J Interf Cytokine Res 18(6):429–437CrossRefGoogle Scholar
  33. Doria G, Frasca D (1997) Genes, immunity, and senescence: looking for a link. Immunol Rev 160:159–170PubMedCrossRefPubMedCentralGoogle Scholar
  34. Fu G, Hu J, Niederberger-Magnenat N, Rybakin V, Casas J, Yachi PP, Feldstein S, Ma B, Hoerter JA, Ampudia J, Rigaud S, Lambolez F, Gavin AL, Sauer K, Cheroutre H, Gascoigne NR (2011) Protein kinase C η is required for T cell activation and homeostatic proliferation. Sci Signal 4(202):ra84. Scholar
  35. Fülöp T Jr (1994) Signal transduction changes in granulocytes and lymphocytes with aging. Immunol Lett 40(3):259–268PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fülöp T Jr, Leblanc C, Lacombe G, Dupuis G (1995) Cellular distribution of protein kinase C isozymes in CD3-mediated stimulation of human T lymphocytes with aging. FEBS Lett 375(1–2):69–74PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fülöp T, Larbi A, Hirokawa K, Mocchegiani E, Lesourds B, Castle S, Wikby A, Franceschi C, Pawelec G (2007) Immunosupportive therapies in aging. Clin Interv Aging 2(1):33–54PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fülöp T, Dupuis G, Witkowski JM, Larbi A (2016) The role of immunosenescence in the development of age-related diseases. Rev Investig Clin 68(2):84–91Google Scholar
  39. Gandin V, Senft D, Topisirovic I, Ronai ZA (2013) RACK1 function in cell motility and protein synthesis. Genes Cancer 4(9–10):369–377PubMedPubMedCentralCrossRefGoogle Scholar
  40. Geijsen N, Spaargaren M, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ (1999) Association of RACK1 and PKCbeta with the common betachain of the IL-5/IL-3/GM-CSF receptor. Oncogene 18:5126–5130PubMedCrossRefGoogle Scholar
  41. Goodnight JA1, Mischak H, Kolch W, Mushinski JF (1995) Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3 T3 fibroblasts. Isoform-specific association with microfilaments, Golgi, endoplasmic reticulum, and nuclear and cell membranes. J Biol Chem 270(17):9991–10001PubMedCrossRefGoogle Scholar
  42. Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14(5):428–436PubMedPubMedCentralCrossRefGoogle Scholar
  43. Guillemot F, Billault A, Auffray C (1989) Physical linkage of a guanine nucleotidebinding protein-related gene to the chicken major histocompatibility complex. Proc Natl Acad Sci USA 86:4594–4598PubMedCrossRefGoogle Scholar
  44. Gupta S (1989) Membrane signal transduction in T cells in aging humans. Ann N Y Acad Sci 568:277–282PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hazeldine J, Arlt W, Lord JM (2010) Dehydroepiandrosterone as a regulator of immune cell function. J Steroid Biochem Mol Biol 120(2–3):127–136PubMedCrossRefPubMedCentralGoogle Scholar
  46. Herrera-Velit P, Knutson KL, Reiner NE (1997) Phosphatidylinositol 3-kinase-dependent activation of protein kinase C-zeta in bacterial lipopolysaccharide-treated human monocytes. J Biol Chem 272(26):16445–16452PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hudson WH, Youn C, Ortlund EA (2013) The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol 20(1):53–58PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jain A, Wordinger RJ, Yorio T, Clark AF (2012) Spliceosome protein (SRp) regulation of glucocorticoid receptor isoforms and glucocorticoid response in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 53(2):857–866PubMedPubMedCentralCrossRefGoogle Scholar
  49. Julkunen I, Sareneva T, Pirhonen J, Ronni T, Melén K, Matikainen S (2001) Molecular pathogenesis of influenza a virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev 12(2–3):171–180PubMedCrossRefGoogle Scholar
  50. Kiely PA, Baillie GS, Lynch MJ, Houslay MD, O’Connor R (2008) Tyrosine 302 in RACK1 is essential for insulin-like growth factor-I-mediated competitive binding of PP2A and beta1 integrin and for tumor cell proliferation and migration. J Biol Chem 283:22952–22961PubMedCrossRefGoogle Scholar
  51. Kiely PA, Baillie GS, Barrett R, Buckley DA, Adams DR, Houslay MD, O’Connor R (2009) Phosphorylation of RACK1 on tyrosine 52 by c-Abl is required for insulin-like growth factor I-mediated regulation of focal adhesion kinase. J Biol Chem 284:20263–20274PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kong KF, Fu G, Zhang Y, Yokosuka T, Casas J, Canonigo-Balancio AJ, Becart S, Kim G7, Yates JR 3rd, Kronenberg M, Saito T, Gascoigne NR, Altman A (2014) Protein kinase C-η controls CTLA-4-mediated regulatory T cell function. Nat Immunol 15(5):465–472. Scholar
  53. Kraus S, Gioeli D, Vomastek T, Gordon V, Weber MJ (2006) Receptor for activated C kinase 1 (RACK1) and Src regulate the tyrosine phosphorylation and function of the androgen receptor. Cancer Res 66:11047–11054PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kroboth PD, Salek FS, Pittenger AL, Fabian TJ, Frye RF (1999) DHEA and DHEAS: a review. J Clin Pharmacol 39:327–348PubMedCrossRefPubMedCentralGoogle Scholar
  55. Labrie F (1991) Intracrinology. Mol Cell Endocrinol 78(3):C113–C118, (2002) J Biol Chem 277(24): 21379–21388PubMedCrossRefPubMedCentralGoogle Scholar
  56. Liu D, Dillon JS (2002) Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Galpha(i2,3). J Biol Chem 277(24):21379–21388PubMedCrossRefPubMedCentralGoogle Scholar
  57. Loegering DJ, Lennartz MR (2011) Protein kinase C and toll-like receptor signaling. Enzyme Res 2011:537821PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z (2005) RACK1 mediates activation of JNK by protein kinase C [corrected]. Mol Cell 19:309–320PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lucas PC, McAllister-Lucas LM, Nunez G (2004) NF-κB signaling in lymphocytes: a new cast of characters. J Cell Sci 117:31–39PubMedCrossRefPubMedCentralGoogle Scholar
  60. Maggio M, Cattabiani C, Lauretani F, Ferrucci L, Luci M, Valenti G, Ceda G (2010) The concept of multiple hormonal dysregulation. Acta Biomed 81(Suppl 1):19–29PubMedPubMedCentralGoogle Scholar
  61. Maggio M, De Vita F, Fisichella A, Colizzi E, Provenzano S, Lauretani F, Luci M, Ceresini G, Dall'Aglio E, Caffarra P, Valenti G, Ceda GP (2015) DHEA and cognitive function in the elderly. J Steroid Biochem Mol Biol 145:281–292PubMedCrossRefGoogle Scholar
  62. Martin WJ, Malmberg AB, Basbaum AI (2001) PKCgamma contributes to a subset of the NMDA-dependent spinal circuits that underlie injury-induced persistent pain. J Neurosci 21(14):5321–5327PubMedCrossRefPubMedCentralGoogle Scholar
  63. McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ (2002) The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 62(6):1261–1273PubMedCrossRefGoogle Scholar
  64. McElhaney JE, Zhou X, Talbot HK, Soethout E, Bleackley RC, Granville DJ, Pawelec G (2012) The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine 30:2060–2067PubMedPubMedCentralCrossRefGoogle Scholar
  65. McLachlan JA, Serkin CD, Morrey-Clark KM, Bakouche O (1995) Immunological functions of aged human monocytes. Pathobiology 63(3):148–159PubMedCrossRefPubMedCentralGoogle Scholar
  66. Miller RA (2000) Effect of aging on T lymphocyte activation. Vaccine 18(16):1654–1660PubMedCrossRefPubMedCentralGoogle Scholar
  67. Miyamoto A, Nakayama K, Imaki H, Hirose S, Jiang Y, Abe M, Tsukiyama T, Nagahama H, Ohno S, Hatakeyama S, Nakayama KI (2002) Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature 416(6883):865–869PubMedCrossRefGoogle Scholar
  68. Müller C, Cluzeaud F, Pinon GM, Rafestin-Oblin M, Morfin R (2004) Dehydroepiandrosterone and its 7-hydroxylated metabolites do not interfere with the transactivation and cellular trafficking of the glucocorticoid receptor. J Steroid Biochem Mol Biol 92:469–476PubMedCrossRefPubMedCentralGoogle Scholar
  69. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellularresponses. FASEB J. 9:484–496PubMedCrossRefPubMedCentralGoogle Scholar
  70. Oakley RH, Sar M, Cidlowski JA (1996) The human glucocorticoid receptor beta isoform. Expression, biochemical properties and putative function. J Biol Chem 271:9550–9559PubMedCrossRefPubMedCentralGoogle Scholar
  71. Ohn T, Kedersha N, Hickman T, Tisdale S, Anderson P (2008) A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol 10:1224–1231PubMedPubMedCentralCrossRefGoogle Scholar
  72. Oka M, Karoor V, Homma N, Nagaoka T, Sakao E, Golembeski SM, Limbird J, Imamura M, Gebb SA, Fagan KA, McMurtry IF (2007) Dehydroepiandrosterone upregulates soluble guanylate cyclase and inhibits hypoxic pulmonary hypertension. Cardiovasc Res 74(3):377–387PubMedPubMedCentralCrossRefGoogle Scholar
  73. Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM, Shaw AC (2009) Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30(7):325–333. Scholar
  74. Pascale A, Fortino I, Govoni S, Trabucchi M, Wetsel WC, Battaini F (1996) Functional impairment in protein kinase C by RACK1 (receptor for activated C kinase 1) deficiency in aged rat brain cortex. J Neurochem 67(6):2471–2477PubMedCrossRefPubMedCentralGoogle Scholar
  75. Pass JM, Gao J, Jones WK, Wead WB, Wu X, Zhang J, Baines CP, Bolli R, Zheng YT, Joshua IG, Ping P (2001) Enhanced PKC beta II translocation and PKC beta II-RACK1 interactions in PKC epsilon-induced heart failure: a role for RACK1. Am J Physiol Heart Circ Physiol 281(6):H2500–H2510PubMedCrossRefGoogle Scholar
  76. Pfeifhofer C, Kofler K, Gruber T, Tabrizi NG, Lutz C, Maly K, Leitges M, Baier G (2003) Protein kinase C theta affects Ca2+ mobilization and NFAT cell activation in primary mouse T cells. J Exp Med 197(11):1525–1535. Erratum in: J Exp Med. 2003 Jul 7;198(1):183PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pfeifhofer C, Gruber T, Letschka T, Thuille N, Lutz-Nicoladoni C, Hermann-Kleiter N, Braun U, Leitges M, Baier G (2006) Defective IgG2a/2b class switching in PKC alpha−/− mice. J Immunol 176(10):6004–6011PubMedCrossRefPubMedCentralGoogle Scholar
  78. Pinto A, Malacrida B, Oieni J, Serafini MM, Davin A, Galbiati V, Corsini E, Racchi M (2015) DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor. Br J Pharmacol 172(11):2918–2927PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ponnappan S, Ponnappan U (2011) Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal 14(8):1551–1585PubMedPubMedCentralCrossRefGoogle Scholar
  80. Racchi M, Sinforiani E, Govoni S, Marinovich M, Galli CL, Corsini E (2006) RACK1 expression and cytokine production in leukocytes obtained from AD patients. Aging Clin Exp Res 218:153–157CrossRefGoogle Scholar
  81. Raison CL, Miller AH (2003) When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatr 160:1554–1565PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rigas AC, Ozanne DM, Neal DE, Robson CN (2003) The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway. J Biol Chem 278:46087–46093PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ron D, Luo J, Mochly-Rosen D (1995) C2 region-derived peptides inhibit translocation and function of beta protein kinase C in vivo. J Biol Chem 270(41):24180–24187PubMedCrossRefGoogle Scholar
  84. Ron D, Jiang Z, Yao L, Vagts A, Diamond I, Gordon A (1999) Coordinated movement of RACK1 with activated betaIIPKC. J Biol Chem 274(38):27039–27046PubMedCrossRefGoogle Scholar
  85. Saijo K, Mecklenbrauker I, Schmedt C, Tarakhovsky A (2003) B cell immunity regulated by the protein kinase C family. Ann N Y Acad Sci 987:125–134PubMedCrossRefGoogle Scholar
  86. Saponaro S, Guarnieri V, Pescarmona GP, Silvagno F (2007) Long-term exposure to dehydroepiandrosterone affects the transcriptional activity of the glucocorticoid receptor. J Steroid Biochem Mol Biol 103:129–136PubMedCrossRefGoogle Scholar
  87. Schechtman D, Mochly-Rosen D (2001) Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene. 20(44):6339–6347PubMedCrossRefGoogle Scholar
  88. Šedý J, Bekiaris V, Ware CF (2014) Tumor necrosis factor superfamily in innate immunity and inflammation. Cold Spring Harb Perspect Biol 7(4):a016279PubMedCrossRefPubMedCentralGoogle Scholar
  89. Shapira L, Takashiba S, Champagne C, Amar S, Van Dyke TE (1994) Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-alpha and IL-1 beta production by human monocytes. J Immunol 153(4):1818–1824PubMedGoogle Scholar
  90. Shapira L, Sylvia VL, Halabi A, Soskolne WA, Van Dyke TE, Dean DD, Boyan BD, Schwartz Z (1997) Bacterial lipopolysaccharide induces early and late activation of protein kinase C in inflammatory macrophages by selective activation of PKC-epsilon. Biochem Biophys Res Commun 240(3):629–634PubMedCrossRefGoogle Scholar
  91. Shinji H, Akagawa KS, Yoshida T (1994) LPS induces selective translocation of protein kinase C-beta in LPS-responsive mouse macrophages, but not in LPS-nonresponsive mouse macrophages. J Immunol 153(12):5760–5771PubMedGoogle Scholar
  92. Soloff RS, Katayama C, Lin MY, Feramisco JR, Hedrick SM. J (2004) Targeted deletion of protein kinase C lambda reveals a distribution of functions between the two atypical protein kinase C isoforms. Immunol 173(5):3250–3260CrossRefGoogle Scholar
  93. Stebbins EG, Mochly-Rosen D (2001) Binding specificity for RACK1 resides in the V5 region of beta II protein kinase C. J Biol Chem 276(32):29644–29650PubMedCrossRefGoogle Scholar
  94. Su TT, Guo B, Kawakami Y, Sommer K, Chae K, Humphries LA, Kato RM, Kang S, Patrone L, Wall R, Teitell M, Leitges M, Kawakami T, Rawlings DJ (2002) PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling. Nat Immunol 3(8):780–786PubMedCrossRefPubMedCentralGoogle Scholar
  95. Sun Z, Arendt CW, Ellmeier W, Schaeffer EM, Sunshine MJ, Gandhi L, Annes J, Petrzilka D, Kupfer A, Schwartzberg PL, Littman DR (2000) PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 404(6776):402–407PubMedCrossRefGoogle Scholar
  96. Suzuki T, Suzuki N, Daynes RA, Engleman EG (1991) Dehydroepiandrosterone enhances IL2 production and cytotoxic effector function of human T cells. Clin Immunol Immunopathol 61(2 Pt 1):202–211PubMedCrossRefGoogle Scholar
  97. Tan SL, Parker PJ (2003) Emerging and diverse roles of protein kinase C in immune cell signaling. Biochem J 376:545–552PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tcherkasowa AE, Adam-Klages S, Kruse ML, Wiegmann K, Mathieu S, Kolanus W, Krönke M, Adam D (2002) Interaction with factor associated with neutral sphingomyelinase activation, a WD motif-containing protein, identifies receptor for activated C-kinase 1 as a novel component of the signaling pathways of the p55 TNF receptor. J Immunol 169(9):5161–5170PubMedCrossRefGoogle Scholar
  99. Thomas PS (2001 Apr) Tumour necrosis factor-alpha: the role of this multifunctional cytokine in asthma. Immunol Cell Biol 79(2):132–140PubMedCrossRefGoogle Scholar
  100. Tschaikowsky K (1994) Protein kinase C inhibitors suppress LPS-induced TNF production in alveolar macrophages and in whole blood: the role of encapsulation into liposomes. Biochim Biophys Acta 1222(1):113–121PubMedCrossRefGoogle Scholar
  101. Usacheva A, Smith R, Minshall R, Baida G, Seng S, Croze E, Colamonici O (2001) The WD motif-containing protein receptor for activated protein kinase C (RACK1) is required for recruitment and activation of signal transducer and activator of transcription 1 through the type I interferon receptor. J Biol Chem 276:22948–22953PubMedCrossRefGoogle Scholar
  102. Usacheva A, Tian X, Sandoval R, Salvi D, Levy D, Colamonici OR (2003) The WD motif-containing protein RACK1 functions as a scaffold protein within the type I IFN receptor-signaling complex. J Immunol 171(6):2989–2994PubMedCrossRefGoogle Scholar
  103. Van Reeth K (2000) Cytokines in the pathogenesis of influenza. Vet Microbiol 74:109–116PubMedCrossRefGoogle Scholar
  104. Vermeulen A (1995) Dehydroepiandrosterone sulfate and aging. Ann N Y Acad Sci 774:121PubMedCrossRefGoogle Scholar
  105. Wang S, Chen JZ, Zhang Z, Gu S, Ji C, Tang R, Ying K, Xie Y, Mao Y (2003) Cloning, expression and genomic structure of a novel human GNB2L1 gene, which encodes a receptor of activated protein kinase C (RACK). Mol Biol Rep 30(1):53–60PubMedCrossRefGoogle Scholar
  106. Weng NP (2006) Aging of the immune system: how much can the adaptive immune system adapt? Immunity 24(5):495–499PubMedPubMedCentralCrossRefGoogle Scholar
  107. West MA, LeMieur T, Clair L, Bellingham J, Rodriguez JL (1997) Protein kinase C regulates macrophage tumor necrosis factor secretion: direct protein kinase C activation restores tumor necrosis factor production in endotoxin tolerance. Surgery 122(2):204–211PubMedCrossRefGoogle Scholar
  108. Whisler RL, Grants IS (1993) Age-related alterations in the activation and expression of phosphotyrosine kinases and protein kinase C (PKC) among human B cells. Mech Aging Dev 71(1–2):31–46PubMedCrossRefGoogle Scholar
  109. Xu Q, Leung DY, Kisich KO (2003) Serine-arginine-rich protein p30 directs alternative splicing of glucocorticoid receptor pre-mRNA to glucocorticoid receptor beta in neutrophils. J Biol Chem 278(29):27112–27118. Epub 2003 May 8PubMedCrossRefPubMedCentralGoogle Scholar
  110. Xu Y, Wang N, Ling F, Li P, Gao Y (2009) Receptor for activated C-kinase 1, a novel binding partner of adiponectin receptor 1. Biochem Biophys Res Commun 378:95–98PubMedCrossRefGoogle Scholar
  111. Zelová H, Hošek J (2013 Jul) TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res 62(7):641–651PubMedCrossRefGoogle Scholar
  112. Zhu J, Gong JY, Goodman OB (2007) Bombesin attenuates pre-mRNA splicing of glucocorticoid receptor by regulating the expression of serine-arginine protein p30c (SRp30c) in prostate cancer cells. Biochim Biophys Acta 1773:1087–1094PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • E. Buoso
    • 1
  • Mm. Serafini
    • 1
  • M. Galasso
    • 1
  • M. Ronfani
    • 1
  • L. Poloni
    • 1
  • C. Lanni
    • 1
  • E. Corsini
    • 2
  • M. Racchi
    • 1
    Email author
  1. 1.Dipartimento di Scienze del FarmacoUniversità degli Studi di PaviaPaviaItaly
  2. 2.Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanItaly

Personalised recommendations