Advertisement

Oxidation and Inflammation in the Immune and Nervous Systems, a Link Between Aging and Anxiety

  • Mónica De la Fuente
Living reference work entry

Abstract

Anxiety and aging are two related situations. Thus, adult individuals with anxiety show premature aging, and anxiety symptoms or disorders are relatively common in older subjects. According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the age-related impairment of the functions of organisms. This principally affects the homeostatic systems; the nervous, endocrine, and immune systems; as well as their bidirectional communication. The age-related alteration in homeostasis and the resulting increase of morbidity and mortality could thus be explained. This theory also suggests that the immune system, due to its property of producing oxidants and inflammatory compounds to carry out its work, if not well regulated, could be involved in the rate of aging of each individual in the context of neuroimmune communication. It has been observed that an oxidative-inflammatory situation occurs in subjects with anxiety, which contributes to immunosenescence and a shorter life span, As an example of this, there are several models of premature aging in mice, in which those animals with a poor response to stress and consequently high levels of anxiety, show an oxidative and inflammatory stress in their immune cells and brain as well as in other tissues. These animals show premature immunosenescence and a shorter life expectancy than the corresponding counterparts of the same age. In conclusion, oxidation and inflammation, two related processes, could be the link between immunosenescence, aging, and anxiety.

Keywords

Oxidative stress Inflammatory stress Oxi-inflamm-aging Anxiety Aging Neuroendocrine immune axis Premature aging 

Notes

Acknowledgments

The author thanks Dr. Vida for her help in this manuscript and also expresses her gratitude to Dr. Arranz, Dr. Gimenez-Llort, Dr. Vida, Mr. Garrido, Ms. Ceprian, Ms. Martinez de Toda, and Ms. Cruces for carried out experiments which have allowed us to arrive at some of the ideas expressed in this chapter. This work was supported by several grants (RETICEF: RD12/0043/0018 and PI15/01787) from the ISCIII-FEDER of the European Union.

References

  1. Almeida FF, Belz GT (2016) Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection. Mucosal Immunol 9(5):1103–1112CrossRefPubMedGoogle Scholar
  2. Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T (2015) Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2(10): 1549–1558CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arranz L, Caamaño JH, Lord JM, De la Fuente M (2010) Preserved immune functions and controlled leukocyte oxidative stress in naturally long-lived mice: possible role of nuclear factor kappa β. J Gerontol A Biol Sci Med Sci 65A:941–950CrossRefGoogle Scholar
  4. Arranz L, Naudi A, De la Fuente M, Pamplona R (2013) Exceptionally old mice are highly resistant to lipoxidation-derived molecular damage. Age 35(3):621–635CrossRefPubMedGoogle Scholar
  5. Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19(12):1420–1445CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bauer M, De la Fuente M (2016) The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev 158:27–37CrossRefPubMedGoogle Scholar
  7. Bauer ME, Muller GC, Correa BL, Vianna P, Turner JE, Bosch JA (2013) Psychoneuroendocrine interventions aimed at attenuating immunosenescence: a review. Biogerontology 14:9–20CrossRefPubMedGoogle Scholar
  8. Behnia F, Shelter S, Menon R (2016) Mechanistic differences leading to infectious and sterile inflammation. Am J Reprod Immunol 75(5):505–518CrossRefPubMedGoogle Scholar
  9. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12): 1132–1139CrossRefPubMedPubMedCentralGoogle Scholar
  10. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69(1):11–20CrossRefPubMedGoogle Scholar
  11. Bischoff SC (2016) Microbiota and aging. Curr Opin Clin Nutr Metab Care 19(l):26–30CrossRefPubMedGoogle Scholar
  12. Blay SL, Marinho V (2012) Anxiety disorders in old age. Curr Opin Psychiatry 25(6):462–467CrossRefPubMedGoogle Scholar
  13. Block ML, Hong IS (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35(Pt 5):1127–1132CrossRefPubMedGoogle Scholar
  14. Bonini MG, Malik AB (2014) Regulating the regulator of ROS production. Cell Res 24(8):908–909CrossRefPubMedPubMedCentralGoogle Scholar
  15. Broz P (2016) Inflammasomes: intracellular detection of extracelular bacteria. Cell Res 26:859–860CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brunk UT, Teman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33(5):611–619CrossRefPubMedGoogle Scholar
  17. Cannizzo ES, Clement CC, Sahua CR, Folloa C, Santambrogioa L (2011) Oxidative stress, inflamm-aging and immunosenescence. J Proteome 74:2313–2323CrossRefGoogle Scholar
  18. Caro P, Gómez J, Arduini A, González-Sánchez M, González-García M, Borrás C, Viña J, Puertas MJ, Sastre J, Barja G (2010) Mitochondrial DNA sequences are present inside nuclear DNA in rat tissues and increase with age. Mitochondrion 10(5):479–486CrossRefPubMedGoogle Scholar
  19. Cheng X, Ivessa AS (2012) Accumulation of linear mitochondrial DNA fragments in the nucleus shortens the chronological life span of yeast. Eur J Cell Biol 91(10):782–788CrossRefPubMedGoogle Scholar
  20. Chiurchiù V, Orlacchio A, Maccarrone M (2016) Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxid Med Cell Longev 2016:7909380CrossRefPubMedGoogle Scholar
  21. Cruces J, Venero C, Pereda Pérez l, De la Fuente M (2014) The effect of psychological stress and social isolation on neuroimmunoendocrine communication. Curr Pharm Des 20(29):4608–4628CrossRefPubMedGoogle Scholar
  22. Das R, Ponnappan S, Ponnappan U (2007) Redox regulation of the proteasome in T lymphocytes during aging. Free Radic Biol Med 42(4):541–551CrossRefPubMedGoogle Scholar
  23. De la Fuente M (2010) Murine models of premature ageing for the study of diet-induced immune changes: improvement of leucocyte functions in two strains of old prematurely ageing mice by dietary supplementation with sulphur-containing antioxidants. Proc Nutr Soc 69(4):651–659CrossRefPubMedGoogle Scholar
  24. De la Fuente M (2014) The immune system, a marker and modulator of the rate of aging. In: Massoud A, Rezaei N (eds) Immunology of aging. Springer, Berlin/HeidelbergGoogle Scholar
  25. De la Fuente M, Gimenez-Llort L (2010) Models of aging of neuroimmunomodulation: strategies for its improvement. Neuroimmunomodulation 17(3):213–216CrossRefPubMedGoogle Scholar
  26. De la Fuente M, Miquel J (2009) An update of the oxidation inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15:3003–3026CrossRefPubMedGoogle Scholar
  27. De la Fuente M, Cruces J, Hernandez O, Ortega E (2011) Strategies to improve the functions and redox state of the immune system in aged subjects. Curr Pharm Des 17(36):3966–3993CrossRefPubMedGoogle Scholar
  28. Deleidi M, Jäggle M, Rubino G (2015) Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci 9:172CrossRefPubMedPubMedCentralGoogle Scholar
  29. Emhan A, Selek S, Bayazit H, Fatih Karababa Ỉ, Kati M, Aksoy N (2015) Evaluation of oxidative and antioxidative parameters in generalized anxiety disorder. Psychiatry Res 230(3):806–810CrossRefPubMedGoogle Scholar
  30. Estes ME, McAllister AK (2014) Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation! Brain Pathol 24(6):623–630CrossRefPubMedPubMedCentralGoogle Scholar
  31. Forman HJ (2016) Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med 97:398–407CrossRefPubMedPubMedCentralGoogle Scholar
  32. Franceschi C, Bonafé M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefPubMedGoogle Scholar
  33. Frasca D, Blomberg BB (2016) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17(1):7–19CrossRefPubMedGoogle Scholar
  34. Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17(1):147–157CrossRefPubMedGoogle Scholar
  35. Garaude J, Acín-Pérez R, Martinez-Cano S, Enamorado M, Ugolini M, Nistal-Villán E, Hervás-Stubbs S, Pelegrín P, Sander LE, Enríquez JA, Sancho D (2016) Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol 17(9): 1037–1045CrossRefPubMedPubMedCentralGoogle Scholar
  36. Garrido A,Cruces J, Ceprian N, Hernandez-Sanchez C, De la Fuente M (2018) Premature agin in behavior and immune functions in tyrosine hydroxylases hploinsufficient female mice. A longitudinal study. Brain Behav Immun Pii:S0889-1591(18)30003-5Google Scholar
  37. Goldberg EL, Dixit VD (2015) Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev 265(1):63–74CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hamon MA, Quintin J (2016) Innate immune memory in mammals. Semin Immunol 28(4): 351–358CrossRefPubMedGoogle Scholar
  39. Han XQ, Gong ZJ, Xu SQ, Li X, Wang LK, Wu SM, Wu JH, Yang HF (2014) Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response. J Huazhoug Univ Sci Technolog Med Sei 34(1):10–17CrossRefGoogle Scholar
  40. Huang J, Xie Y, Sun X, Zelt HJ 3rd, Kang R, Lotze MT, Tang D (2015) DAMPs, ageing, and cancer: the ‘DAMP Hypothesis’. Ageing Res Rev 24(Pt A):3–16CrossRefPubMedGoogle Scholar
  41. Hung LF, Huang KY, Yang DH, Chang DM, Lai JH, Ho LJ (2010) Advanced glycation end products induce T cell apoptosis: involvement of oxidative stress, caspase and the mitochondrial pathway. Mech Ageing Dev 131(1l-12):682–691CrossRefPubMedGoogle Scholar
  42. Kapetanovic R, Bokil NJ, Sweet MJ (2015) Innate immune perturbations, accumulating DAMPs and inflammasome dysregulation: a ticking time bomb in ageing. Ageing Res Rev 24(Pt A):40–53CrossRefPubMedGoogle Scholar
  43. Knuppertz L, Osiewacz HD (2016) Orchestrating the network of molecular pathways affecting aging: role of nonselective autophagy and mitophagy. Mech Ageing Dev 153:30–40CrossRefGoogle Scholar
  44. Kröller-Schön SI, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M, Mikhed Y, Zinssius E, Mader M, Stamm P, Treiber N, Scharffetter-Kochanek K, Li H, Schulz E, Wenzel P, Münzel T, Daiber A (2014) Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal 20(2):247–266CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liochev SI (2015) Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal 23(3):187–207CrossRefPubMedGoogle Scholar
  46. Lourbopoulos A, Ertürk A, Hellal F (2015) Microglia in action: how aging and injury can change the brain’s guardians. Front Cell Neurosci 9:54CrossRefPubMedPubMedCentralGoogle Scholar
  47. Luévano-Contreras C, Garav-Sevilla ME, Wrobel K, Malacara JM, Wrobel K (2013) Dietary advanced glycation end products restriction diminishes inflammation markers and oxidative stress in patients with type 2 diabetes mellitus. J Clin Biochem Nutr 52:22–26CrossRefPubMedGoogle Scholar
  48. Ma Q (2014) Advances in mechanisms of anti-oxidation. Discov Med 17(93):121–130PubMedPubMedCentralGoogle Scholar
  49. Martinez de Toda E, De la Fuente M (2015) The role of Hsp70 in oxi-inflamm-aging and it use as a potential biomarker of lifespan. Biogerontology 16:709–721CrossRefPubMedGoogle Scholar
  50. Martínez de Toda I, Mate I, Vida C, Cruces J, De la Fuente M (2016a) Immune function parameters as markers of biological age and predictors of longevity. Aging 8(11):3110–3119CrossRefPubMedGoogle Scholar
  51. Martínez de Toda I, Vida C, Ortega E, De La Fuente M (2016b) Hsp70 basal levels, a tissue marker of the rate of aging and longevity in mice. Exp Gerontol 84:21–28CrossRefGoogle Scholar
  52. Netea-Maier RT, Plantinga TS, van de Veerdonk FL, Smit JW, Netea MG (2016) Modulation of inflammation by autophagy: consequences for human disease. Autophagy 12(2):245–260CrossRefPubMedGoogle Scholar
  53. Noubade R, Wong K, Ota N, Rutz S, Eidenschenk C, Valdez PA, Ding J, Peng I, Sebrell A, Caplazi P, DeVoss J, Soriano RH, Sai T, Lu R, Modrusan Z, Hackney J, Ouyang W (2014) NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509(7499):235–239CrossRefPubMedGoogle Scholar
  54. O’Donovan A, Slavich GM, Epel ES, Neylan TC (2013) Exaggerated neurobiological sensitivity to threat as a mechanism linking anxiety with increased risk for diseases of aging. Neurosci Biobehav Rev 37:96–108CrossRefPubMedGoogle Scholar
  55. Ojo JO, Rezaie P, Gabbott PL, Stewart MG (2015) Impact of age-related neuroglial cell responses on hippocampal deterioration. Front Aging Neurosci 7:57CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320CrossRefPubMedGoogle Scholar
  57. Pema G, Iannone G, Alciati A, Caldirola D (2016) Are anxiety disorders associated with accelerated aging? A focus on neuroprogression. Neural Plast 2016:8457612Google Scholar
  58. Ramasamy R, Shekhtman A, Schmidt AM (2016) The multiple faces of RAGE – opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 20(4):431–446CrossRefPubMedGoogle Scholar
  59. Rattan SI (2014) Molecular gerontology: from homeodynamics to hormesis. Curr Pharm Des 20(18):3036–3039CrossRefPubMedGoogle Scholar
  60. Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF (2015) Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neuroscience 289:429–442CrossRefPubMedPubMedCentralGoogle Scholar
  61. Reeg S, Grune T (2015) Protein oxidation in aging: does it play a role in aging progression? Antioxid Redox Signal 23(3):239–255CrossRefPubMedPubMedCentralGoogle Scholar
  62. Remes O, Brayne C, van der Linde R. Lafortune L. (2016) A systematic review of reviews on the prevalence of anxiety disorders in adult populationss. Brain Behav 6(7):e00497CrossRefPubMedPubMedCentralGoogle Scholar
  63. Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signalling and inflammation: impact on healthspan and lifespan. J Mol Med 89:667–676CrossRefPubMedPubMedCentralGoogle Scholar
  64. Salminen A, Kaarniranta K, Kauppinen A (2012) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging 4(3):166–175CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sanz A (2016) Mitochondrial reactive oxygen species: do they extend or shorten animal lifespan? Biochim Biophys Acta 1857(8):1116–1126CrossRefPubMedGoogle Scholar
  66. Schorey JS, Harding CV (2016) Extracellular vesicles and infectious diseases: new complexity to an old story. J Clin Invest 126(4):1181–1189CrossRefPubMedPubMedCentralGoogle Scholar
  67. Shen Q, Shang N, Li P (2011) In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Curr Microbiol 62(4):1097–1103CrossRefPubMedGoogle Scholar
  68. Shrivastava G, León-Juárez M, García-Cordero J, Mcza-Sánchez DE, Cedillo-Barrón L (2016) Inflammasomes and its importance in viral infections. Immunol Res 64:1101CrossRefPubMedGoogle Scholar
  69. Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT (2014) Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 8:315CrossRefPubMedPubMedCentralGoogle Scholar
  70. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12(4):503–535CrossRefPubMedPubMedCentralGoogle Scholar
  71. Thundyil J, Lim KL (2015) DAMPs and neurodegeneration. Ageing Res Rev 24(Pt A):17–28CrossRefPubMedGoogle Scholar
  72. Turpin D, Truchetet ME, Faustin B, Augusto JF, Contin-Bordes C, Brisson A, Blanco P, Duffau P (2016) Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev 15(2):174–183CrossRefPubMedGoogle Scholar
  73. Vassileva V, Piquette-Miller M (2014) Inflammation: the dynamic force of health and disease. Clin Pharmacol Ther 96(4):401–405CrossRefPubMedGoogle Scholar
  74. Verburg-van Kemenade BM, Cohen N, Chadzinska M (2016) Neuroendocrine-immune interaction: evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. Dev Comp Immunol 66:2.  https://doi.org/10.1016/j.dci.2016.05.015CrossRefPubMedGoogle Scholar
  75. Vida C, De la Fuente M (2013) Stress-related behavioural responses, immunity and ageing in animal models. In: Bosch JA, Phillips C, Lord JM (eds) Immunosenescence: psychosocial and behavioral determinants. Springer, New York, pp 125–144CrossRefGoogle Scholar
  76. Vida C, Gonzalez EM, De la Fuente M (2014) Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety. Curr Pharm Des 20(29):4656–4678CrossRefPubMedGoogle Scholar
  77. Vida C, Martinez de Toda I, Cruces J, Garrido A, Gonzalez-Sanchez M, De la Fuente M (2017) Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice. Redox Biol 12:423–437CrossRefPubMedPubMedCentralGoogle Scholar
  78. Villasana LE, Weber S, Akinyeke T, Raber J (2016) Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species. J Neurochem 138(6):896–908CrossRefPubMedPubMedCentralGoogle Scholar
  79. Viveros MP, Arranz L, Hernanz A, Miquel J, De la Fuente M (2007) A model of premature aging in mice based on altered stress-related behavioral response and immunosenescence. Neuroimmunomodulation 14:157–162CrossRefPubMedGoogle Scholar
  80. Ward RJ, Dexter DT, Crichton RR (2015) Ageing, neuroinflammation and neurodegeneration. Front Biosci 7:189–204CrossRefGoogle Scholar
  81. Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH (2014) Lactobacillus pentosus var, plantarum C29 ameliorates memory impairment and inflammaging in a d-galactose-induced accelerated aging mouse model. Anaerobe 27:22–26CrossRefPubMedGoogle Scholar
  82. Wu Z, Yu J, Zhu A, Nakanishi H (2016) Nutrients, microglia aging, and brain aging. Oxidative Med Cell Longev 2016:7498528Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics, Physiology and Microbiology (Animal Physiology), Faculty of Biological SciencesComplutense University of MadridMadridSpain

Personalised recommendations