Advertisement

MicroRNA-125b Modulates Inflammatory Chemokine CCL4 Expression and Its Reduction May Cause CCL4 Increase in Circulation with Age

  • Nai-Lin Cheng
  • Nan-ping Weng
Living reference work entry

Abstract

Elevated levels of inflammatory chemokines in circulation are a hallmark of aging, but the mechanisms underlying this age-associated change are not fully understood. Recent studies suggest microRNAs play a role in the regulation of chemokine expression. Here, we review the current understanding of expression of inflammatory CC chemokine ligand 4 (CCL4) in human immune cells and its increase with aging and how reduction of microRNA-125b (miR-125b) expression contributes to the increase of CCL4 in monocytes and naïve CD8+ T cells in old adults.

Keywords

miR-125b CCL4 Immune cells Aging Monocyte Naïve CD8+ T cell 

References

  1. Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787–820.  https://doi.org/10.1146/annurev.immunol.24.021605.090529CrossRefPubMedGoogle Scholar
  2. Andres PG, Beck PL, Mizoguchi E, Mizoguchi A, Bhan AK, Dawson T, Kuziel WA, Maeda N, MacDermott RP, Podolsky DK, Reinecker HC (2000) Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte-associated Th2-type immune response in the intestine. J Immunol 164(12):6303–6312CrossRefPubMedGoogle Scholar
  3. Arasli M, Ozsurekci Y, Elaldi N, McAuley AJ, Karadag Oncel E, Tekin IO, Gozel MG, Kaya A, Icagasioglu FD, Caglayik DY, Korukluoglu G, Kokturk F, Bakir M, Bente DA, Ceyhan M (2015) Elevated chemokine levels during adult but not pediatric Crimean-Congo hemorrhagic fever. J Clin Virol 66:76–82.  https://doi.org/10.1016/j.jcv.2015.03.010CrossRefPubMedGoogle Scholar
  4. Bonfa G, Benevides L, Souza Mdo C, Fonseca DM, Mineo TW, Rossi MA, Silva NM, Silva JS, de Barros Cardoso CR (2014) CCR5 controls immune and metabolic functions during toxoplasma gondii infection. PLoS One 9(8):e104736.  https://doi.org/10.1371/journal.pone.0104736CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bousquet M, Quelen C, Rosati R, Mansat-De M, Véronique, La Starza R, Bastard C, Lippert E, Talmant P, Lafage-Pochitaloff M, Leroux D, Gervais C, Viguie F, Lai JL, Terre C, Beverlo B, Sambani C, Hagemeijer A, Marynen P, Delsol G, Dastugue N, Mecucci C, Brousset P (2008) Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 205(11):2499–2506 jem.20080285 [pii];10.1084/jem.20080285 [doi]CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burger JA, Quiroga MP, Hartmann E, Burkle A, Wierda WG, Keating MJ, Rosenwald A (2009) High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 113(13):3050–3058.  https://doi.org/10.1182/blood-2008-07-170415CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG (2001) B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2(12):1126–1132.  https://doi.org/10.1038/ni735CrossRefPubMedGoogle Scholar
  8. Cairo S, Wang Y, de Reynies A, Duroure K, Dahan J, Redon MJ, Fabre M, McClelland M, Wang XW, Croce CM, Buendia MA (2010) Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A 107(47):20471–20476.  https://doi.org/10.1073/pnas.1009009107CrossRefPubMedPubMedCentralGoogle Scholar
  9. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN (2006) Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440(7086):890–895 nature04651 [pii];10.1038/nature04651 [doi]CrossRefPubMedGoogle Scholar
  10. Chandrasekar B, Deobagkar-Lele M, Victor ES, Nandi D (2013) Regulation of chemokines, CCL3 and CCL4, by interferon gamma and nitric oxide synthase 2 in mouse macrophages and during Salmonella enterica serovar typhimurium infection. J Infect Dis 207(10):1556–1568.  https://doi.org/10.1093/infdis/jit067CrossRefPubMedGoogle Scholar
  11. Chapiro E, Russell LJ, Struski S, Cave H, Radford-Weiss I, Valle VD, Lachenaud J, Brousset P, Bernard OA, Harrison CJ, Nguyen-Khac F (2010) A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia 24(7):1362–1364.  https://doi.org/10.1038/leu.2010.93CrossRefPubMedGoogle Scholar
  12. Chaudhuri AA, So AY, Mehta A, Minisandram A, Sinha N, Jonsson VD, Rao DS, O'Connell RM, Baltimore D (2012) Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proc Natl Acad Sci U S A 109(11):4233–4238. 1200677109 [pii];10.1073/pnas.1200677109 [doi]CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chegou NN, Black GF, Kidd M, van Helden PD, Walzl G (2009) Host markers in QuantiFERON supernatants differentiate active TB from latent TB infection: preliminary report. BMC Pulm Med 9:21.  https://doi.org/10.1186/1471-2466-9-21CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cheng NL, Chen X, Kim J, Shi AH, Nguyen C, Wersto R, Weng NP (2015) MicroRNA-125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age. Aging Cell 14(2):200–208.  https://doi.org/10.1111/acel.12294CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chiba K, Zhao W, Chen J, Wang J, Cui HY, Kawakami H, Miseki T, Satoshi H, Tanaka J, Asaka M, Kobayashi M (2004) Neutrophils secrete MIP-1 beta after adhesion to laminin contained in basement membrane of blood vessels. Br J Haematol 127(5):592–597.  https://doi.org/10.1111/j.1365-2141.2004.05242.xCrossRefPubMedGoogle Scholar
  16. Chiu WK, Fann M, Weng NP (2006) Generation and growth of CD28nullCD8+ memory T cells mediated by IL-15 and its induced cytokines. J Immunol 177(11):7802–7810CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270(5243):1811–1815CrossRefPubMedGoogle Scholar
  18. Dall'Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Franceschi C (2013) N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 12(2):685–698. S1568-1637(12)00009-8 [pii];10.1016/j.arr.2012.02.002 [doi]CrossRefPubMedGoogle Scholar
  19. De Cecco L, Capaia M, Zupo S, Cutrona G, Matis S, Brizzolara A, Orengo AM, Croce M, Marchesi E, Ferrarini M, Canevari S, Ferrini S (2015) Interleukin 21 controls mRNA and MicroRNA expression in CD40-activated chronic lymphocytic leukemia cells. PLoS One 10(8):e0134706.  https://doi.org/10.1371/journal.pone.0134706CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dorner BG, Scheffold A, Rolph MS, Huser MB, Kaufmann SH, Radbruch A, Flesch IE, Kroczek RA (2002) MIP-1alpha, MIP-1beta, RANTES, and ATAC/lymphotactin function together with IFN-gamma as type 1 cytokines. Proc Natl Acad Sci U S A 99(9):6181–6186.  https://doi.org/10.1073/pnas.092141999CrossRefPubMedPubMedCentralGoogle Scholar
  21. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9 gerona/glu057 [pii];10.1093/gerona/glu057 [doi]CrossRefPubMedGoogle Scholar
  22. Franceschi C, Bonafe M, Valensin S (2000) Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 18(16):1717–1720CrossRefPubMedGoogle Scholar
  23. Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB (2014) High TNF-alpha levels in resting B cells negatively correlate with their response. Exp Gerontol 54:116–122.  https://doi.org/10.1016/j.exger.2014.01.004CrossRefPubMedGoogle Scholar
  24. Gefen N, Binder V, Zaliova M, Linka Y, Morrow M, Novosel A, Edry L, Hertzberg L, Shomron N, Williams O, Trka J, Borkhardt A, Izraeli S (2010) Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53. Leukemia 24(1):89–96.  https://doi.org/10.1038/leu.2009.208CrossRefPubMedGoogle Scholar
  25. Geluk A, Bobosha K, van der Ploeg-van Schip JJ, Spencer JS, Banu S, Martins MV, Cho SN, Franken KL, Kim HJ, Bekele Y, Uddin MK, Hadi SA, Aseffa A, Pessolani MC, Pereira GM, Dockrell HM, Ottenhoff TH (2012) New biomarkers with relevance to leprosy diagnosis applicable in areas hyperendemic for leprosy. J Immunol 188(10):4782–4791.  https://doi.org/10.4049/jimmunol.1103452CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gnainsky Y, Granot I, Aldo PB, Barash A, Or Y, Schechtman E, Mor G, Dekel N (2010) Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil Steril 94(6):2030–2036.  https://doi.org/10.1016/j.fertnstert.2010.02.022CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14 (5):428-436. ni.2588 [pii]; https://doi.org/10.1038/ni.2588 [doi]CrossRefPubMedPubMedCentralGoogle Scholar
  28. Grob M, Schmid-Grendelmeier P, Joller-Jemelka HI, Ludwig E, Dubs RW, Grob PJ, Wuthrich B, Bisset LR (2003) Altered intracellular expression of the chemokines MIP-1alpha, MIP-1beta and IL-8 by peripheral blood CD4+ and CD8+ T cells in mild allergic asthma. Allergy 58(3):239–245CrossRefPubMedGoogle Scholar
  29. Huang HC, Yu HR, Huang LT, Huang HC, Chen RF, Lin IC, Ou CY, Hsu TY, Yang KD (2012) miRNA-125b regulates TNF-alpha production in CD14+ neonatal monocytes via post-transcriptional regulation. J Leukoc Biol 92(1):171–182. jlb.1211593 [pii];10.1189/jlb.1211593 [doi]CrossRefPubMedGoogle Scholar
  30. Kamin-Lewis R, Abdelwahab SF, Trang C, Baker A, AL DV, Gallo RC, Lewis GK (2001) Perforin-low memory CD8+ cells are the predominant T cells in normal humans that synthesize the beta -chemokine macrophage inflammatory protein-1beta. Proc Natl Acad Sci U S A 98(16):9283–9288.  https://doi.org/10.1073/pnas.161298998CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kasama T, Strieter RM, Lukacs NW, Burdick MD, Kunkel SL (1994) Regulation of neutrophil-derived chemokine expression by IL-10. J Immunol 152(7):3559–3569PubMedGoogle Scholar
  32. Klusmann JH, Li Z, Bohmer K, Maroz A, Koch ML, Emmrich S, Godinho FJ, Orkin SH, Reinhardt D (2010) miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 24(5):478–490.  https://doi.org/10.1101/gad.1856210CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kroetz DN, Deepe GS Jr (2011) An aberrant thymus in CCR5−/− mice is coupled with an enhanced adaptive immune response in fungal infection. J Immunol 186(10):5949–5955.  https://doi.org/10.4049/jimmunol.1003876CrossRefPubMedPubMedCentralGoogle Scholar
  34. Leino M, Makela M, Reijula K, Haahtela T, Mussalo-Rauhamaa H, Tuomi T, Hintikka EL, Alenius H (2003) Intranasal exposure to a damp building mould, Stachybotrys chartarum, induces lung inflammation in mice by satratoxin-independent mechanisms. Clin Exp Allergy 33(11):1603–1610CrossRefPubMedGoogle Scholar
  35. Luther SA, Cyster JG (2001) Chemokines as regulators of T cell differentiation. Nat Immunol 2(2):102–107.  https://doi.org/10.1038/84205CrossRefPubMedGoogle Scholar
  36. Lutz CT, Quinn LS (2012) Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging (Albany NY) 4(8):535–546CrossRefGoogle Scholar
  37. Macaulay R, Akbar AN, Henson SM (2013) The role of the T cell in age-related inflammation. Age (Dordr) 35(3):563–572.  https://doi.org/10.1007/s11357-012-9381-2CrossRefGoogle Scholar
  38. Maurer M, von SE (2004) Macrophage inflammatory protein-1. Int J Biochem Cell Biol 36(10):1882–1886. 10.1016/j.biocel.2003.10.019 [doi];S1357272503003844 [pii]CrossRefPubMedGoogle Scholar
  39. Menten P, Wuyts A, Van Damme J (2002) Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13(6):455–481CrossRefPubMedGoogle Scholar
  40. Moser B, Loetscher P (2001) Lymphocyte traffic control by chemokines. Nat Immunol 2(2):123–128.  https://doi.org/10.1038/84219CrossRefPubMedGoogle Scholar
  41. Ngoc PL, Gold DR, Tzianabos AO, Weiss ST, Celedon JC (2005) Cytokines, allergy, and asthma. Curr Opin Allergy Clin Immunol 5(2):161–166CrossRefPubMedGoogle Scholar
  42. O'Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D (2010) MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci U S A 107(32):14235–14240CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ohukainen P, Syvaranta S, Napankangas J, Rajamaki K, Taskinen P, Peltonen T, Helske-Suihko S, Kovanen PT, Ruskoaho H, Rysa J (2015) MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease. Ann Med 47(5):423–429.  https://doi.org/10.3109/07853890.2015.1059955CrossRefPubMedGoogle Scholar
  44. Ooi AG, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY (2010) MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci U S A 107(50):21505–21510. 1016218107 [pii];10.1073/pnas.1016218107 [doi]CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ottonello L, Montecucco F, Bertolotto M, Arduino N, Mancini M, Corcione A, Pistoia V, Dallegri F (2005) CCL3 (MIP-1alpha) induces in vitro migration of GM-CSF-primed human neutrophils via CCR5-dependent activation of ERK 1/2. Cell Signal 17(3):355–363.  https://doi.org/10.1016/j.cellsig.2004.08.002CrossRefPubMedGoogle Scholar
  46. Patel DD, Zachariah JP, Whichard LP (2001) CXCR3 and CCR5 ligands in rheumatoid arthritis synovium. Clin Immunol 98(1):39–45.  https://doi.org/10.1006/clim.2000.4957CrossRefPubMedGoogle Scholar
  47. Petrenko O, Ischenko I, Enrietto PJ (1995) Isolation of a cDNA encoding a novel chicken chemokine homologous to mammalian macrophage inflammatory protein-1 beta. Gene 160(2):305–306CrossRefPubMedGoogle Scholar
  48. Puissegur MP, Eichner R, Quelen C, Coyaud E, Mari B, Lebrigand K, Broccardo C, Nguyen-Khac F, Bousquet M, Brousset P (2012) B-cell regulator of immunoglobulin heavy-chain transcription (Bright)/ARID3a is a direct target of the oncomir microRNA-125b in progenitor B-cells. Leukemia 26(10):2224–2232.  https://doi.org/10.1038/leu.2012.95CrossRefPubMedGoogle Scholar
  49. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910.  https://doi.org/10.1101/gr.2722704CrossRefPubMedPubMedCentralGoogle Scholar
  50. Roth SJ, Carr MW, Springer TA (1995) C-C chemokines, but not the C-X-C chemokines interleukin-8 and interferon-gamma inducible protein-10, stimulate transendothelial chemotaxis of T lymphocytes. Eur J Immunol 25(12):3482–3488.  https://doi.org/10.1002/eji.1830251241CrossRefPubMedGoogle Scholar
  51. Sadasivan S, Zanin M, O'Brien K, Schultz-Cherry S, Smeyne RJ (2015) Induction of microglia activation after infection with the non-neurotropic A/CA/04/2009 H1N1 influenza virus. PLoS One 10(4):e0124047.  https://doi.org/10.1371/journal.pone.0124047CrossRefPubMedPubMedCentralGoogle Scholar
  52. Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28(2):99–114. 28/2/99 [pii];10.1101/gad.235184.113 [doi]CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sallusto F, Lanzavecchia A (2000) Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol Rev 177:134–140CrossRefPubMedGoogle Scholar
  54. Sebastian C, Espia M, Serra M, Celada A, Lloberas J (2005) MacrophAging: a cellular and molecular review. Immunobiology 210(2-4):121–126.  https://doi.org/10.1016/j.imbio.2005.05.006CrossRefPubMedGoogle Scholar
  55. Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F (2010) Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol 11:30. 1471-2172-11-30 [pii];10.1186/1471-2172-11-30 [doi]CrossRefPubMedPubMedCentralGoogle Scholar
  56. Shaham L, Binder V, Gefen N, Borkhardt A, Izraeli S (2012) MiR-125 in normal and malignant hematopoiesis. Leukemia 26(9):2011–2018.  https://doi.org/10.1038/leu.2012.90CrossRefPubMedGoogle Scholar
  57. Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887 nri3547 [pii];10.1038/nri3547 [doi]CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sonoki T, Iwanaga E, Mitsuya H, Asou N (2005) Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 19(11):2009–2010.  https://doi.org/10.1038/sj.leu.2403938CrossRefPubMedGoogle Scholar
  59. Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S (1993) T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature 361(6407):79–82CrossRefPubMedGoogle Scholar
  60. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179(8):5082–5089 179/8/5082 [pii]CrossRefPubMedGoogle Scholar
  61. Tili E, Michaille JJ, Luo Z, Volinia S, Rassenti LZ, Kipps TJ, Croce CM (2012) The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state. Blood 120(13):2631–2638.  https://doi.org/10.1182/blood-2012-03-415737CrossRefPubMedPubMedCentralGoogle Scholar
  62. Uguccioni M, D'Apuzzo M, Loetscher M, Dewald B, Baggiolini M (1995) Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1 alpha and MIP-1 beta on human monocytes. Eur J Immunol 25(1):64–68.  https://doi.org/10.1002/eji.1830250113CrossRefPubMedGoogle Scholar
  63. Varadhan R, Yao W, Matteini A, Beamer BA, Xue QL, Yang H, Manwani B, Reiner A, Jenny N, Parekh N, Fallin MD, Newman A, Bandeen-Roche K, Tracy R, Ferrucci L, Walston J (2014) Simple biologically informed inflammatory index of two serum cytokines predicts 10 year all-cause mortality in older adults. J Gerontol A Biol Sci Med Sci 69(2):165–173 glt023 [pii];10.1093/gerona/glt023 [doi]CrossRefPubMedGoogle Scholar
  64. Walker WE, Kurscheid S, Joshi S, Lopez CA, Goh G, Choi M, Barakat L, Francis J, Fisher A, Kozal M, Zapata H, Shaw A, Lifton R, Sutton RE, Fikrig E (2015) Increased levels of macrophage inflammatory proteins result in resistance to R5-tropic HIV-1 in a subset of elite controllers. J Virol 89(10):5502–5514.  https://doi.org/10.1128/JVI.00118-15CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wallace GR, Farmer I, Church A, Graham EM, Stanford MR (2003) Serum levels of chemokines correlate with disease activity in patients with retinal vasculitis. Immunol Lett 90(1):59–64CrossRefPubMedGoogle Scholar
  66. Wang GC, Casolaro V (2014) Immunologic changes in frail older adults. Transl Med UniSa 9:1–6PubMedPubMedCentralGoogle Scholar
  67. Weng NP (2006) Aging of the immune system: how much can the adaptive immune system adapt? Immunity 24(5):495–499CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wikby A, Nilsson BO, Forsey R, Thompson J, Strindhall J, Lofgren S, Ernerudh J, Pawelec G, Ferguson F, Johansson B (2006) The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev 127(8):695–704. S0047-6374(06)00116-3 [pii];10.1016/j.mad.2006.04.003 [doi]CrossRefPubMedGoogle Scholar
  69. Withanage GS, Wigley P, Kaiser P, Mastroeni P, Brooks H, Powers C, Beal R, Barrow P, Maskell D, McConnell I (2005) Cytokine and chemokine responses associated with clearance of a primary Salmonella enterica serovar Typhimurium infection in the chicken and in protective immunity to rechallenge. Infect Immun 73(8):5173–5182.  https://doi.org/10.1128/IAI.73.8.5173-5182.2005CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yoganathan K, Yang LK, Rossant C, Huang Y, Ng S, Butler MS, Buss AD (2004) Cochlioquinones and epi-cochlioquinones: antagonists of the human chemokine receptor CCR5 from Bipolaris brizae and Stachybotrys chartarum. J Antibiot (Tokyo) 57(1):59–63CrossRefGoogle Scholar
  71. Zhang T, Guo CJ, Li Y, Douglas SD, Qi XX, Song L, Ho WZ (2003) Interleukin-1beta induces macrophage inflammatory protein-1beta expression in human hepatocytes. Cell Immunol 226(1):45–53CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang H, Luo XQ, Feng DD, Zhang XJ, Wu J, Zheng YS, Chen X, Xu L, Chen YQ (2011) Upregulation of microRNA-125b contributes to leukemogenesis and increases drug resistance in pediatric acute promyelocytic leukemia. Mol Cancer 10:108.  https://doi.org/10.1186/1476-4598-10-108CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhou R, Hu G, Gong AY, Chen XM (2010) Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38(10):3222–3232.  https://doi.org/10.1093/nar/gkq056CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of Molecular Biology and Immunology, National Institute on AgingNational Institutes of HealthBaltimoreUSA
  2. 2.Lymphocyte Differentiation Section, Laboratory of Molecular Biology and ImmunologyNational Institute on Aging, National Institutes of HealthBaltimoreUSA

Personalised recommendations