Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Big Data in Mobile Networks

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_259-1



The term Big Data in mobile networks refers to datasets generated by and collected from mobile cellular networks. Such datasets consist in both the actual user data transported by the network (e.g., voice or data traffic) and metadata and control messages supporting network management.


A mobile or cellular network is a telecommunication system characterized by a radio last mile and the capability of managing the mobility of end terminals in a seamless fashion (i.e., without interrupting the communication). Such a network is geographically distributed over area units called cells (from which the name cellular originates), each served by one or more radio transceivers called base stations.

Mobile networks are nowadays the most popular mean for accessing both the traditional public switched telephone network (PSTN) and the public Internet. According to a projection by GSMA, the trade association of mobile operators, 70% of people...

This is a preview of subscription content, log in to check access


  1. Baldo N, Giupponi L, Mangues-Bafalluy J (2014) Big data empowered self organized networks. In: European wireless 2014; 20th European wireless conference, pp 1–8.  https://doi.org/10.5281/zenodo.268949
  2. Bar-Gera H (2007) Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from Israel. Transp Res Part C Emerg Technol 15(6):380–391. https://doi.org/10.1016/j.trc.2007.06.003
  3. Bermudez IN, Mellia M, Munafo MM, Keralapura R, Nucci A (2012) DNS to the rescue: discerning content and services in a tangled web. In: Proceedings of the 2012 internet measurement conference, IMC’12, pp 413–426Google Scholar
  4. Bujlow T, Carela-Español V, Barlet-Ros P (2015) Independent comparison of popular DPI tools for traffic classification. Comput Netw 76:75–89. https://doi.org/10.1016/j.comnet.2014.11.001
  5. Caceres N, Wideberg JP, Benitez FG (2007) Deriving origin destination data from a mobile phone network. IET Intell Transp Syst 1(1):15–26.  https://doi.org/10.1049/iet-its:20060020
  6. Callegari C, Garroppo RG, Giordano S (2017) Inferring social information on foreign people from mobile traffic data. In: 2017 IEEE international conference on communications (ICC), pp 1–6.  https://doi.org/10.1109/ICC.2017.7997255
  7. Casas P, Fiadino P, Bär A (2013a) Ip mining: extracting knowledge from the dynamics of the internet addressing space. In: Proceedings of the 2013 25th international teletraffic congress (ITC), pp 1–9.  https://doi.org/10.1109/ITC.2013.6662933
  8. Casas P, Seufert M, Schatz R (2013b) Youqmon: a system for on-line monitoring of youtube QoE in operational 3G networks. SIGMETRICS Perform Eval Rev 41(2):44–46Google Scholar
  9. Casas P, Fiadino P, D’Alconzo A (2016a) When smartphones become the enemy: unveiling mobile apps anomalies through clustering techniques. In: Proceedings of the 5th workshop on all things cellular: operations, applications and challenges (ATC’16), pp 19–24Google Scholar
  10. Casas P, Seufert M, Wamser F, Gardlo B, Sackl A, Schatz R (2016b) Next to you: monitoring quality of experience in cellular networks from the end-devices. IEEE Trans Netw Serv Manag 13(2):181–196Google Scholar
  11. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15:1–15:58Google Scholar
  12. Dainotti A, Pescape A, Claffy K (2012) Issues and future directions in traffic classification. IEEE Netw 26(1):35–40.  https://doi.org/10.1109/MNET.2012.6135854
  13. D’Alconzo A, Coluccia A, Romirer-Maierhofer P (2010) Distribution-based anomaly detection in 3G mobile networks: from theory to practice. Int J Netw Manag 20(5):245–269.  https://doi.org/10.1002/nem.747
  14. Deri L, Martinelli M, Bujlow T, Cardigliano A (2014) nDPI: open-source high-speed deep packet inspection. In: 2014 international wireless communications and mobile computing conference (IWCMC), pp 617–622.  https://doi.org/10.1109/IWCMC.2014.6906427
  15. Dittler T, Tschorsch F, Dietzel S, Scheuermann B (2016) ANOTEL: cellular networks with location privacy. In: 2016 IEEE 41st conference on local computer networks (LCN), pp 635–638.  https://doi.org/10.1109/LCN.2016.110
  16. Erman J, Gerber A, Sen S (2011) HTTP in the home: it is not just about PCs. SIGCOMM Comput Commun Rev 41(1):90–95. https://doi.org/10.1145/1925861.1925876
  17. Fiadino P, Valerio D, Ricciato F, Hummel KA (2012) Steps towards the extraction of vehicular mobility patterns from 3G signaling data. Springer, Berlin/Heidelberg, pp 66–80Google Scholar
  18. Fiadino P, D’Alconzo A, Bär A, Finamore A, Casas P (2014) On the detection of network traffic anomalies in content delivery network services. In: 2014 26th international teletraffic congress (ITC), pp 1–9.  https://doi.org/10.1109/ITC.2014.6932930
  19. Fiadino P, D’Alconzo A, Schiavone M, Casas P (2015) Rcatool – a framework for detecting and diagnosing anomalies in cellular networks. In: Proceedings of the 2015 27th international teletraffic congress (ITC’15), pp 194–202Google Scholar
  20. Fiadino P, Casas P, D’Alconzo A, Schiavone M, Baer A (2016) Grasping popular applications in cellular networks with big data analytics platforms. IEEE Trans Netw Serv Manag 13(3):681–695.  https://doi.org/10.1109/TNSM.2016.2558839
  21. Fiadino P, Ponce-Lopez V, Antonio J, Torrent-Moreno M, D’Alconzo A (2017) Call detail records for human mobility studies: taking stock of the situation in the “always connected era”. In: Proceedings of the workshop on big data analytics and machine learning for data communication networks (Big-DAMA’17), pp 43–48Google Scholar
  22. Fontugne R, Mazel J, Fukuda K (2014) Hashdoop: a mapreduce framework for network anomaly detection. In: 2014 IEEE conference on computer communications workshops (INFOCOM WKSHPS), pp 494–499.  https://doi.org/10.1109/INFCOMW.2014.6849281
  23. González MC, Hidalgo C, Barabási A (2008) Understanding individual human mobility patterns. Nature 453:779–782.  https://doi.org/10.1038/nature06958, 0806.1256
  24. He Y, Yu FR, Zhao N, Yin H, Yao H, Qiu RC (2016) Big data analytics in mobile cellular networks. IEEE Access 4:1985–1996.  https://doi.org/10.1109/ACCESS.2016.2540520
  25. Iji M (2017) GSMA intelligence – unique mobile subscribers to surpass 5 billion this year. https://www. gsmaintelligence.com/research/2017/02/unique-mobile- subscribers-to-surpass-5-billion-this-year/613. Accessed 08 Feb 2018
  26. Jaiswal S, Iannaccone G, Diot C, Kurose J, Towsley D (2004) Inferring TCP connection characteristics through passive measurements. In: IEEE INFOCOM 2004, vol 3, pp 1582–1592.  https://doi.org/10.1109/INFCOM.2004.1354571
  27. Janecek A, Valerio D, Hummel K, Ricciato F, Hlavacs H (2015) The cellular network as a sensor: from mobile phone data to real-time road traffic monitoring. IEEE Trans Intell Transp Syst.  https://doi.org/10.1109/TITS.2015.2413215
  28. Jiang S, Ferreira J, Gonzalez MC (2017) Activity-based human mobility patterns inferred from mobile phone data: a case study of Singapore. IEEE Trans BigData.  https://doi.org/10.1109/TBDATA.2016.2631141
  29. Klaine PV, Imran MA, Onireti O, Souza RD (2017) A survey of machine learning techniques applied to self organizing cellular networks. IEEE Commun Surv Tutorials 99:1–1.  https://doi.org/10.1109/COMST.2017.2727878
  30. Lakhina A, Crovella M, Diot C (2005) Mining anomalies using traffic feature distributions. SIGCOMM Comput Commun Rev 35(4):217–228Google Scholar
  31. Lee Y, Lee Y (2012) Toward scalable internet traffic measurement and analysis with Hadoop. SIGCOMM Comput Commun Rev 43(1):5–13Google Scholar
  32. Liu J, Liu F, Ansari N (2014) Monitoring and analyzing big traffic data of a large-scale cellular network with Hadoop. IEEE Netw 28(4):32–39.  https://doi.org/10.1109/MNET.2014.6863129
  33. Maier G, Feldmann A, Paxson V, Allman M (2009) On dominant characteristics of residential broadband internet traffic. In: Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference (IMC’09). ACM, New York, pp 90–102. https://doi.org/10.1145/1644893.1644904
  34. Mivule K, Anderson B (2015) A study of usability-aware network trace anonymization. In: 2015 science and information conference (SAI), pp 1293–1304.  https://doi.org/10.1109/SAI.2015.7237310
  35. Modani N, dey k, Gupta R, Godbole S (2013) CDR analysis based telco churn prediction and customer behavior insights: a case study. In: Lin X, Manolopoulos Y, Srivastava D, Huang G (eds) Web information systems engineering – WISE 2013. Springer, Berlin/Heidelberg, pp 256–269Google Scholar
  36. Nguyen TTT, Armitage G (2008) A survey of techniques for internet traffic classification using machine learning. IEEE Commun Surv Tutorials 10(4):56–76.  https://doi.org/10.1109/SURV.2008.080406
  37. Pappalardo L, Vanhoof M, Gabrielli L, Smoreda Z, Pedreschi D, Giannotti F (2016) An analytical framework to nowcast well-being using mobile phone data. Int J Data Sci Anal 2:75–92Google Scholar
  38. Ranjan G, Zang H, Zhang Z, Bolot J (2012) Are call detail records biased for sampling human mobility? SIGMOBILE Mob Comput Commun Rev 16(3):33Google Scholar
  39. Ricciato F (2006) Traffic monitoring and analysis for the optimization of a 3G network. Wireless Commun 13(6):42–49Google Scholar
  40. Ricciato F, Vacirca F, Svoboda P (2007) Diagnosis of capacity bottlenecks via passive monitoring in 3G networks: an empirical analysis. Comput Netw 51(4):1205–1231Google Scholar
  41. Ricciato F, Widhalm P, Craglia M, Pantisano F (2015) Estimating population density distribution from network-based mobile phone data. Publications Office of the European Union. https://doi.org/10.2788/162414
  42. Ricciato F, Widhalm P, Pantisano F, Craglia M (2017) Beyond the “single-operator, CDR-only” paradigm: an interoperable framework for mobile phone network data analyses and population density estimation. Pervasive Mob Comput 35:65–82. https://doi.org/10.1016/j.pmcj.2016.04.009CrossRefGoogle Scholar
  43. Schiavone M, Romirer-Maierhofer P, Ricciato F, Baiocchi A (2014) Towards bottleneck identification in cellular networks via passive TCP monitoring. In: Ad-hoc, mobile, and wireless networks – 13th international conference (ADHOC-NOW 2014). Proceedings, Benidorm, 22–27 June 2014, pp 72–85Google Scholar
  44. Song C, Qu Z, Blumm N, Barabási AL (2010) Limits of predictability in human mobility.  https://doi.org/10.1126/science.1177170
  45. Valenti S, Rossi D, Dainotti A, Pescapè A, Finamore A, Mellia M (2013) Reviewing traffic classification. In: Biersack E, Callegari C, Matijasevic M (eds) Data traffic monitoring and analysis: from measurement, classification, and anomaly detection to quality of experience. Springer, Berlin/Heidelberg, pp 123–147CrossRefGoogle Scholar
  46. Yurcik W, Woolam C, Hellings G, Khan L, Thuraisingham B (2008) Measuring anonymization privacy/analysis tradeoffs inherent to sharing network data. In: NOMS 2008 – 2008 IEEE network operations and management symposium, pp 991–994.  https://doi.org/10.1109/NOMS.2008.4575265

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Data Science and Big Data Analytics UnitEURECAT (Technology Centre of Catalonia)BarcelonaSpain

Section editors and affiliations

  • Kamran Munir
    • 1
  • Antonio Pescapè
    • 2
  1. 1.Computer Science and Creative TechnologiesUniversity of the West of EnglandBristolUnited Kingdom
  2. 2.Department of Electrical Engineering and Information TechnologyUniversity of Napoli Federico IINapoliItaly