Experimentation and Modeling of Mechanical Integrity and Instability at Metal/Ceramic Interfaces

  • Wen Jin MengEmail author
  • Shuai Shao
Reference work entry


Controlling the mechanical integrity of metal/ceramic interfaces is important for a wide range of technological applications. Achievement of such control requires a number of key elements, including establishing appropriate experimental protocols for quantifying mechanical response of metal/ceramic interfacial regions under well-defined loading conditions, understanding how interfacial compositional and structural characteristics impact such interfacial mechanical response, and elucidating unit interface physics and predicting interfacial mechanical response via development of multiscale physics-based models. Achieving this combined testing, understanding, and modeling will ultimately lead to effective control of mechanical integrity of metal/ceramic interfaces and true interfacial engineering through targeted modification of the interfacial composition and structure.

Major breakthroughs in the improvement of interfacial mechanical integrity can be enabled by understanding and controlling key physical factors, including interfacial architectural and chemical features governing the mechanical response of metal/ceramic interfacial regions (MCIRs), thus leading to unprecedented interfacial mechanical performance that meets/exceeds the demands of future applications. Guided by a multiscale integrated computational materials engineering (ICME) framework, the mechanical integrity of MCIRs can be substantially improved by a variety of architectural and chemical enhancements/refinements. Recent research efforts by the authors aim to provide a fundamental, physics-based understanding of the failure mechanisms of MCIRs by constructing a novel, multiscale, computation-guided, and experiment-validated ICME framework. Interfacial refinements to be explored within this framework include addition of alloying impurities as well as geometrical features such as multilayered and stepped interfacial architectures. The findings can then be consolidated into a high fidelity, experiment-validated, micro- and mesoscale modeling tool to significantly accelerate the discovery-design-implementation cycle of advanced MCIRs. In this chapter, we summarize some preliminary results on shear failure and instability of various metal/ceramic interfacial regions, outline the theoretical background of this research thrust, and identify challenges and opportunities in this area.


Metal/ceramic interfaces Microscale mechanical testing Integrated computational materials engineering (ICME) 


  1. F. Akasheh, H.M. Zbib, J.P. Hirth, R.G. Hoagland, A. Misra, Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J. Appl. Phys. 101, 084314 (2007). CrossRefGoogle Scholar
  2. ASTM International, ASTM D2095 Standard Test Method for Tensile Strength of Adhesives by Means of Bar and Rod, Annu. B. ASTM Stand. 15 (2002), pp. 1–3. CrossRefGoogle Scholar
  3. ASTM International, ASTM D1002-05: Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading ( Metal-To-Metal), Standards (2005), pp. 1–5. CrossRefGoogle Scholar
  4. ASTM International, ASTM D3165-07 Standard Test Method for Strength Properties of Adhesives in Shear by Tension Loading of Single-Lap-Joint Laminated Assemblies (2007), p. 4. CrossRefGoogle Scholar
  5. ASTM International, ASTM D897 Standard Test Method for Tensile Properties of Adhesive Bonds (ASTM International, West Conshohocken, 2012), pp. 24–26. CrossRefGoogle Scholar
  6. ASTM International, Standard Test Method for Strength Properties of Double Lap Shear Adhesive Joints by (ASTM International, 2013).
  7. ASTM International, ASTM D4541-17: Standard Test Method for Pull-off Strength of Coatings Using Portable Adhesion Testers (ASTM international, 2014), pp. 1–16.
  8. ASTM International, ASTM C1624-05: Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing (ASTM international, 2015)Google Scholar
  9. M. Benoit, N. Tarrat, J. Morillo, Density functional theory investigations of titanium γ -surfaces and stacking faults. Model. Simul. Mater. Sci. Eng. 21, 015009 (2013). CrossRefGoogle Scholar
  10. I.J. Beyerlein, J. Wang, R. Zhang, Interface-dependent nucleation in nanostructured layered composites. APL Mater. 1 (2013a). CrossRefGoogle Scholar
  11. I.J. Beyerlein, J. Wang, R. Zhang, Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater. 61, 7488–7499 (2013b). CrossRefGoogle Scholar
  12. D. Bhattacharyya, N.A.A. Mara, P. Dickerson, R.G.G. Hoagland, A. Misra, Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater. 59, 3804–3816 (2011). CrossRefGoogle Scholar
  13. S.D. Brown, Adherence failure and measurement: Some troubling questions. J. Adhes. Sci. Technol. 8, 687–711 (1994). CrossRefGoogle Scholar
  14. S.D. Brown, Adherence failure and measurement: Some troubling questions, in Adhesion Measurement of Films and Coatings, ed. by K. L. Mittal, 1st edn. (VSP, Utrecht, 1995), pp. 15–39Google Scholar
  15. S.J. Bull, Can the scratch adhesion test ever be quantitative? Adhes. Meas. Film. Coatings 2, 107 (2001)Google Scholar
  16. O. Casals, S. Forest, Finite element crystal plasticity analysis of spherical indentation in bulk single crystals and coatings. Comput. Mater. Sci. 45, 774–782 (2009). CrossRefGoogle Scholar
  17. H.Y. Chen, C.J. Tsai, F.H. Lu, The Young’s modulus of chromium nitride films. Surf. Coatings Technol. 184, 69–73 (2004). CrossRefGoogle Scholar
  18. K. Chen, W.J. Meng, J.A. Eastman, Interface development in cu-based structures transient liquid phase (TLP) bonded with thin Al foil intermediate layers. Metall. Mater. Trans. A. 45, 3892–3906 (2014a). CrossRefGoogle Scholar
  19. K. Chen, Y. Mu, W.J. Meng, A new experimental approach for evaluating the mechanical integrity of interfaces between hard coatings and substrates. MRS Commun. 4, 19–23 (2014b). CrossRefGoogle Scholar
  20. Y. Chen, S. Shao, X.-Y. Liu, S.K. Yadav, N. Li, N. Mara, J. Wang, Misfit dislocation patterns of mg-Nb interfaces. Acta Mater. 126, 552–563 (2017). CrossRefGoogle Scholar
  21. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice-Hall, New York, 2001)Google Scholar
  22. R. Darolia, Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 58, 315–348 (2013)CrossRefGoogle Scholar
  23. J.A. El-Awady, S. Bulent Biner, N.M. Ghoniem, A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes. J. Mech. Phys. Solids 56, 2019–2035 (2008). CrossRefzbMATHGoogle Scholar
  24. A.G. Evans, D.R. Clarke, C.G. Levi, The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc. 28, 1405–1419 (2008). CrossRefGoogle Scholar
  25. N.M. Ghoniem, X. Han, Dislocation motion in anisotropic multilayer materials. Philos. Mag. 85, 2809–2830 (2005). CrossRefGoogle Scholar
  26. N. Ghoniem, S.-H. Tong, L. Sun, Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys. Rev. B 61, 913–927 (2000). CrossRefGoogle Scholar
  27. N.M. Ghoniem, J. Huang, Z. Wang, Affine covariant-contravariant vector forms for the elastic field of parametric dislocations in isotropic crystals. Philos. Mag. Lett. 82, 55–63 (2002). CrossRefGoogle Scholar
  28. S. Groh, E.B. Marin, M.F. Horstemeyer, H.M. Zbib, Multiscale modeling of the plasticity in an aluminum single crystal. Int. J. Plast. 25, 1456–1473 (2009). CrossRefzbMATHGoogle Scholar
  29. V. Gupta, A.S. Argon, D.M. Parks, J.A. Cornie, Measurement of interface strength by a laser spallation technique. J. Mech. Phys. Solids 40, 141–180 (1992). CrossRefGoogle Scholar
  30. V. Gupta, J. Yuan, A. Pronin, Recent developments in the laser spallation technique to measure the interface strength and its relationship to interface toughness with applications to metal/ceramic, ceramic/ceramic and ceramic/polymer interfaces. J. Adhes. Sci. Technol. 8, 713–747 (1994). CrossRefGoogle Scholar
  31. V. Gupta, V. Kireev, J. Tian, H. Yoshida, H. Akahoshi, Glass-modified stress waves for adhesion measurement of ultra thin films for device applications. J. Mech. Phys. Solids 51, 1395–1412 (2003). CrossRefzbMATHGoogle Scholar
  32. X. Han, N.M. Ghoniem, Stress field and interaction forces of dislocations in anisotropic multilayer thin films. Philos. Mag. 85, 1205–1225 (2005). CrossRefGoogle Scholar
  33. C.H. Henager, R.J. Kurtz, R.G. Hoagland, Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philos. Mag. 84, 2277–2303 (2004). CrossRefGoogle Scholar
  34. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Krieger Publishing Company, Malabar, 1982)zbMATHGoogle Scholar
  35. J.P. Hirth, R. Pond, Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater. 44, 4749–4763 (1996). . Accessed 29 Nov 2012CrossRefGoogle Scholar
  36. J.P.P. Hirth, R.C.C. Pond, J. Lothe, Disconnections in tilt walls. Acta Mater. 54, 4237–4245 (2006). CrossRefGoogle Scholar
  37. H. Holleck, Material selection for hard coatings. J. Vac. Sci. Technol. A Vac. Surf. Film 4, 2661–2669 (1986). CrossRefGoogle Scholar
  38. K. Holmberg, A. Matthews, Coatings Tribology – Properties, Mechanisms, Techniques and Applications in Surface Engineering, 2nd edn. (Elsevier Science, Amsterdam, 2009)Google Scholar
  39. M.A. Hopcroft, W.D. Nix, T.W. Kenny, What is the Young’s modulus of silicon? J. Microelectromech. Syst. 19, 229–238 (2010). CrossRefGoogle Scholar
  40. T. Itoh (ed.), Ion Beam Assisted Film Growth (Elsevier, Amsterdam, 1989)Google Scholar
  41. J.C. Jiang, W.J. Meng, A.G. Evans, C.V. Cooper, Structure and mechanics of W-DLC coated spur gears. Surf. Coatings Technol. 176, 50–56 (2003). CrossRefGoogle Scholar
  42. Y.M. Kim, B.J. Lee, Modified embedded-atom method interatomic potentials for the Ti-C and Ti-N binary systems. Acta Mater. 56, 3481–3489 (2008a). CrossRefGoogle Scholar
  43. Y.-M. Kim, B.-J. Lee, Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems. Acta Mater. 56, 3481–3489 (2008b). CrossRefGoogle Scholar
  44. C. Kittel, Introduction to solid state physics. Solid State Phys., 703 (2005). CrossRefGoogle Scholar
  45. M.N. Kotzalas, G.L. Doll, Tribological advancements for reliable wind turbine performance. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 4829–4850 (2010). CrossRefGoogle Scholar
  46. C. Kral, W. Lengauer, D. Rafaja, P. Ettmayer, Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides. J. Alloys Compd. 265, 215–233 (1998). CrossRefGoogle Scholar
  47. P. Kutilek, J. Miksovsky, The procedure of evaluating the practical adhesion strength of new biocompatible nano-and micro-thin films in accordance with international standards. Acta Bioeng. Biomech. 13, 87–94 (2011)Google Scholar
  48. R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 41, 2611–2624 (1993). CrossRefGoogle Scholar
  49. R.A. Lebensohn, C.N. Tomé, A self-consistent viscoplastic model: Prediction of rolling textures of anisotropic polycrystals. Mater. Sci. Eng. A 175, 71–82 (1994). CrossRefGoogle Scholar
  50. N. Li, H. Wang, A. Misra, J. Wang, In situ nanoindentation study of plastic co-deformation in Al-TiN nanocomposites. Sci. Rep. 4, 6633 (2014). CrossRefGoogle Scholar
  51. J. Lin, W.D. Sproul, J.J. Moore, Microstructure and properties of nanostructured thick CrN coatings. Mater. Lett. 89, 55–58 (2012). CrossRefGoogle Scholar
  52. Z. Lin, X. Peng, T. Fu, Y. Zhao, C. Feng, C. Huang, Z. Wang, Atomic structures and electronic properties of interfaces between aluminum and carbides/nitrides: A first-principles study. Phys. E Low-Dimensional Syst. Nanostruct. 89, 15–20 (2017). CrossRefGoogle Scholar
  53. K. Lukaszkowicz, A. Kriz, J. Sondor, Structure and adhesion of thin coatings deposited by PVD technology on the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates. Arch. Mater. Sci. Eng. 51, 40–47 (2011)Google Scholar
  54. H. Lyu, A. Ruimi, H.M. Zbib, A dislocation-based model for deformation and size effect in multi-phase steels. Int. J. Plast. 72, 44–59 (2015). CrossRefGoogle Scholar
  55. H. Lyu, N. Taheri-Nassaj, H.M. Zbib, A multiscale gradient-dependent plasticity model for size effects. Philos. Mag. 96, 1883–1908 (2016). CrossRefGoogle Scholar
  56. H. Lyu, M. Hamid, A. Ruimi, H.M. Zbib, Stress/strain gradient plasticity model for size effects in heterogeneous nano-microstructures. Int. J. Plast. (2017). CrossRefGoogle Scholar
  57. E.B. Marin, On the Formulation of a Crystal Plasticity Model (Livermore, 2006).
  58. P.H. Mayrhofer, G. Tischler, C. Mitterer, Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coatings Technol. 142–144, 78–84 (2001). CrossRefGoogle Scholar
  59. W.J. Meng, T.J. Curtis, Inductively coupled plasma assisted physical vapor deposition of titanium nitride coatings. J. Electron. Mater. 26, 1297–1302 (1997)CrossRefGoogle Scholar
  60. W.J. Meng, G.L. Eesley, Growth and mechanical anisotropy of TiN thin films. Thin Solid Films 271, 108–116 (1995). CrossRefGoogle Scholar
  61. W.J. Meng, T.J. Curtis, L.E. Rehn, P.M. Baldo, Temperature dependence of inductively coupled plasma assisted growth of TiN thin films. Surf. Coatings Technol. 120–121, 206–212 (1999). CrossRefGoogle Scholar
  62. W.J. Meng, E.I. Meletis, L.E. Rehn, P.M. Baldo, Inductively coupled plasma assisted deposition and mechanical properties of metal-free and Ti-containing hydrocarbon coatings. J. Appl. Phys. 87, 2840–2848 (2000). CrossRefGoogle Scholar
  63. C. Mercer, A.G. Evans, N. Yao, S. Allameh, C.V. Cooper, Material removal on lubricated steel gears with W-DLC-coated surfaces. Surf. Coatings Technol. 173, 122–129 (2003). CrossRefGoogle Scholar
  64. M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, 2007)Google Scholar
  65. R.E. Miller, L. Shilkrot, W.A. Curtin, A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films. Acta Mater. 52, 271–284 (2004). CrossRefGoogle Scholar
  66. Y. Mu, J.W. Hutchinson, W.J. Meng, Micro-pillar measurements of plasticity in confined cu thin films. Extrem. Mech. Lett. 1, 62–69 (2014). CrossRefGoogle Scholar
  67. F.R.N. Nabarro, Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256–272 (1947). CrossRefGoogle Scholar
  68. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 2000)zbMATHGoogle Scholar
  69. W. Oliver, G. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement-sensing indentation systems. J. Mater. Res. 7, 1564–1583 (1992). CrossRefGoogle Scholar
  70. R. Peierls, The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940). CrossRefGoogle Scholar
  71. A.J. Perry, J.A. Sue, P.J. Martin, Practical measurement of the residual stress in coatings. Surf. Coatings Technol. 81, 17–28 (1996). CrossRefGoogle Scholar
  72. I. Salehinia, S. Shao, J. Wang, H.M.M. Zbib, Plastic deformation of metal/ceramic Nanolayered composites. JOM 66, 2078–2085 (2014). CrossRefGoogle Scholar
  73. I. Salehinia, S. Shao, J. Wang, H.M. Zbib, Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Mater. 86 (2015). CrossRefGoogle Scholar
  74. C. Sant, M. Ben Daia, P. Aubert, S. Labdi, P. Houdy, Interface effect on tribological properties of titanium–titanium nitride nanolaminated structures. Surf. Coatings Technol. 127, 167–173 (2000). CrossRefGoogle Scholar
  75. S. Shao, J. Wang, Relaxation, structure, and properties of semicoherent interfaces. JOM 68, 242–252 (2016). CrossRefGoogle Scholar
  76. S. Shao, J. Wang, A. Misra, R.G. Hoagland, Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces. Sci. Rep. 3 (2013).
  77. S. Shao, J. Wang, A. Misra, Energy minimization mechanisms of semi-coherent interfaces. J. Appl. Phys. 116, 023508 (2014). CrossRefGoogle Scholar
  78. S. Shao, J. Wang, I.J. Beyerlein, A. Misra, Glide dislocation nucleation from dislocation nodes at semi-coherent {111} cu–Ni interfaces. Acta Mater. 98, 206–220 (2015). CrossRefGoogle Scholar
  79. S. Shao, A. Misra, H. Huang, J. Wang, Micro-scale modeling of interface-dominated mechanical behavior. J. Mater. Sci. (2017). CrossRefGoogle Scholar
  80. S. Shao, F. Akasheh, J. Wang, Y. Liu, Alternative misfit dislocations pattern in semi-coherent FCC {100} interfaces. Acta Mater. 144, 177–186 (2018). CrossRefGoogle Scholar
  81. S.A. Skirlo, M.J. Demkowicz, Viscoelasticity of stepped interfaces. Appl. Phys. Lett. 103, 171908 (2013). CrossRefGoogle Scholar
  82. J.R. Smith, T. Hong, D.J. Srolovitz, Metal-ceramic adhesion and the Harris functional. Phys. Rev. Lett. 72, 4021–4024 (1994). CrossRefGoogle Scholar
  83. M.E. Straumanis, L.S. Yu, Lattice parameters, densities, expansion coefficients and perfection of structure of cu and of cu–in α phase. Acta Crystallogr. Sect. A. 25, 676–682 (1969). CrossRefGoogle Scholar
  84. J.A. Sue, A.J. Perry, J. Vetter, Young’s modulus and stress of CrN deposited by cathodic vacuum arc evaporation. Surf. Coatings Technol. 68–69, 126–130 (1994). CrossRefGoogle Scholar
  85. T. Sun, X. Wu, R. Wang, W. Li, Q. Liu, First-principles study on the adhesive properties of Al/TiC interfaces: Revisited. Comput. Mater. Sci. 126, 108–120 (2017). CrossRefGoogle Scholar
  86. K.H. Thulasi Raman, M.S.R.N. Kiran, U. Ramamurty, G. Mohan Rao, Structural and mechanical properties of room temperature sputter deposited CrN coatings. Mater. Res. Bull. 47, 4463–4466 (2012). CrossRefGoogle Scholar
  87. L. Toth, Transition Metal Carbides and Nitrides (Elsevier Science, 1971)Google Scholar
  88. M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004). CrossRefGoogle Scholar
  89. M.D. Uchic, P.A. Shade, D.M. Dimiduk, Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361–386 (2009). CrossRefGoogle Scholar
  90. L.J. Vandeperre, F. Giuliani, S.J. Lloyd, W.J. Clegg, The hardness of silicon and germanium. Acta Mater. 55, 6307–6315 (2007). CrossRefGoogle Scholar
  91. C.A. Volkert, A.M. Minor, Focused ion beam microscopy and micromachining. MRS Bull. 32, 389–399 (2007). CrossRefGoogle Scholar
  92. J. L. Vossen, W. Kern (eds.), Thin Film Processes II (Academic Press, Boston, 1991)Google Scholar
  93. J. Wang, A. Misra, An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20–28 (2011). CrossRefGoogle Scholar
  94. J. Wang, A. Misra, Strain hardening in nanolayered thin films. Curr. Opin. Solid State Mater. Sci. 18, 19–28 (2014). CrossRefGoogle Scholar
  95. J. Wang, R.G. Hoagland, J.P. Hirth, A. Misra, Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 56, 3109–3119 (2008). CrossRefGoogle Scholar
  96. H. Wang, P.D. Wu, C.N. Tomé, Y. Huang, A finite strain elastic-viscoplastic self-consistent model for polycrystalline materials. J. Mech. Phys. Solids 58, 594–612 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  97. J. Wang, C. Zhou, I.J.I.J. Beyerlein, S. Shao, Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM 66, 102–113 (2014). CrossRefGoogle Scholar
  98. J. Wang, Q. Zhou, S. Shao, A. Misra, Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5 (2017). CrossRefGoogle Scholar
  99. S.K.K. Yadav, S. Shao, J. Wang, X.-Y.X.-Y. Liu, Structural modifications due to interface chemistry at metal-nitride interfaces. Sci. Rep. 5, 17380 (2015). CrossRefGoogle Scholar
  100. W. Yang, G. Ayoub, I. Salehinia, B. Mansoor, H. Zbib, Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta Mater. 122, 99–108 (2017). CrossRefGoogle Scholar
  101. H.M. Zbib, T. Diaz de la Rubia, A multiscale model of plasticity. Int. J. Plast. 18, 1133–1163 (2002). CrossRefzbMATHGoogle Scholar
  102. H.M. Zbib, M. Rhee, J.P. Hirth, On plastic deformation and the dynamics of 3D dislocations. Int. J. Mech. Sci. 40, 113–127 (1998). CrossRefzbMATHGoogle Scholar
  103. J.M. Zhang, Y. Zhang, K.W. Xu, V. Ji, Representation surfaces of Young’s modulus and Poisson’s ratio for BCC transition metals. Phys. B Condens. Matter 390, 106–111 (2007). CrossRefGoogle Scholar
  104. Z.G. Zhang, O. Rapaud, N. Bonasso, D. Mercs, C. Dong, C. Coddet, Control of microstructures and properties of dc magnetron sputtering deposited chromium nitride films. Vacuum 82, 501–509 (2008). CrossRefGoogle Scholar
  105. R.F. Zhang, T.C. Germann, J. Wang, X.-Y. Liu, I.J. Beyerlein, Role of interface structure on the plastic response of cu/Nb nanolaminates under shock compression: Non-equilibrium molecular dynamics simulations. Scr. Mater. 68, 114–117 (2013). CrossRefGoogle Scholar
  106. R.F. Zhang, I.J. Beyerlein, S.J. Zheng, S.H. Zhang, A. Stukowski, T.C. Germann, Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps. Acta Mater. 113, 194–205 (2016). CrossRefGoogle Scholar
  107. X. Zhang, B. Zhang, Y. Mu, S. Shao, C.D.C.D. Wick, B.R. Ramachandran, W.J. Meng, Mechanical failure of metal/ceramic interfacial regions under shear loading. Acta Mater. 138, 224–236 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations